Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069161

RESUMO

The angiotensin II type 2 (AT2) receptor has a role in promoting insulin sensitivity. However, the mechanisms underlying the AT2 receptor-induced facilitation of insulin are still not completely understood. Therefore, we investigated whether acute in vivo administration of AT2 receptor agonist compound 21 (C21) could activate insulin signaling molecules in insulin-target tissues. We report that, in male C57BL/6 mice, an acute (5 min, 0.25 mg/kg; i.v.) injection of C21 induces the phosphorylation of Akt and ERK1/2 at activating residues (Ser473 and Thr202/Tyr204, respectively) in both epididymal white adipose tissue (WAT) and heart tissue. In WAT, the extent of phosphorylation (p) of Akt and ERK1/2 induced by C21 was approximately 65% of the level detected after a bolus injection of a dose of insulin known to induce maximal activation of the insulin receptor (IR). In the heart, C21 stimulated p-Akt to a lesser extent than in WAT and stimulated p-ERK1/2 to similar levels to those attained by insulin administration. C21 did not modify p-IR levels in either tissue. We conclude that in vivo injection of the AT2 receptor agonist C21 activates Akt and ERK1/2 through a mechanism that does not involve the IR, indicating the participation of these enzymes in AT2R-mediated signaling.


Assuntos
Insulinas , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Masculino , Fosforilação , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Tecido Adiposo/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo
2.
J Mol Endocrinol ; 69(2): 357-376, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35608964

RESUMO

Growth hormone (GH) exerts major actions in cardiac growth and metabolism. Considering the important role of insulin in the heart and the well-established anti-insulin effects of GH, cardiac insulin resistance may play a role in the cardiopathology observed in acromegalic patients. As conditions of prolonged exposure to GH are associated with a concomitant increase of circulating GH, IGF1 and insulin levels, to dissect the direct effects of GH, in this study, we evaluated the activation of insulin signaling in the heart using four different models: (i) transgenic mice overexpressing GH, with chronically elevated GH, IGF1 and insulin circulating levels; (ii) liver IGF1-deficient mice, with chronically elevated GH and insulin but decreased IGF1 circulating levels; (iii) mice treated with GH for a short period of time; (iv) primary culture of rat cardiomyocytes incubated with GH. Despite the differences in the development of cardiomegaly and in the metabolic alterations among the three experimental mouse models analyzed, exposure to GH was consistently associated with a decreased response to acute insulin stimulation in the heart at the receptor level and through the PI3K/AKT pathway. Moreover, a blunted response to insulin stimulation of this signaling pathway was also observed in cultured cardiomyocytes of neonatal rats incubated with GH. Therefore, the key novel finding of this work is that impairment of insulin signaling in the heart is a direct and early event observed as a consequence of exposure to GH, which may play a major role in the development of cardiac pathology.


Assuntos
Acromegalia , Hormônio do Crescimento Humano , Animais , Hormônio do Crescimento/metabolismo , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Transdução de Sinais
3.
Mol Cell Endocrinol ; 498: 110587, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31539597

RESUMO

The renin-angiotensin system modulates insulin action. Pharmacological stimulation of angiotensin type 2 receptor (AT2R) was shown to have beneficial metabolic effects in various animal models of insulin resistance and type 2 diabetes and also to increase insulin sensitivity in wild type mice. In this study we further explored the role of the AT2R on insulin action and glucose homeostasis by investigating the glycemic profile and in vivo insulin signaling status in insulin-target tissues from both male and female AT2R knockout (KO) mice. When compared to the respective wild-type (WT) group, glycemia and insulinemia was unaltered in AT2RKO mice regardless of sex. However, female AT2RKO mice displayed decreased insulin sensitivity compared to their WT littermates. This was accompanied by a compensatory increase in adiponectinemia and with a specific attenuation of the activity of main insulin signaling components (insulin receptor, Akt and ERK1/2) in adipose tissue with no apparent alterations in insulin signaling in either liver or skeletal muscle. These parameters remained unaltered in male AT2RKO mice as compared to male WT mice. Present data show that the AT2R has a physiological role in the conservation of insulin action in female but not in male mice. Our results suggest a sexual dimorphism in the control of insulin action and glucose homeostasis by the AT2R and reinforce the notion that pharmacological modulation of the balance between the AT1R and AT2R receptor could be important for treatment of metabolic syndrome and type 2 diabetes.


Assuntos
Adiponectina/sangue , Biomarcadores/sangue , Glicemia/metabolismo , Resistência à Insulina , Insulina/sangue , Receptor Tipo 2 de Angiotensina/fisiologia , Caracteres Sexuais , Tecido Adiposo/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores Sexuais , Transdução de Sinais
4.
Front Pharmacol ; 10: 146, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30853914

RESUMO

The MasR receptor (MasR) is an orphan G protein-coupled receptor proposed as a candidate for mediating the angiotensin (Ang)-converting enzyme 2-Ang-(1-7) protective axis of renin-angiotensin system. This receptor has been suggested to participate in several physiological processes including cardio- and reno-protection and regulation of the central nervous system function. Although the knowledge of the signaling mechanisms associated with MasR is essential for therapeutic purposes, these are still poorly understood. Accordingly, in the current study we aimed to characterize the signaling pathways triggered by the MasR. To do that, we measured cAMP and Ca2+ levels in both naïve and MasR transfected cells in basal conditions and upon incubation with putative MasR ligands. Besides, we evaluated activation of ERK1/2 by Ang-(1-7) in MasR transfected cells. Results indicated the existence of a high degree of MasR constitutive activity toward cAMP modulation. This effect was not mediated by the PDZ-binding motif of the MasR but by receptor coupling to Gαi-adenylyl cyclase signaling pathway. Incubation of MasR transfected cells with Ang-(1-7) or the synthetic ligand AVE 0991 amplified MasR negative modulation of cAMP levels. On the other hand, we provided evidence for lack of MasR-associated modulation of Ca2+ levels by Ang-(1-7). Finally, it was determined that the MasR attenuated Ang-(1-7)-induced ERK1/2 phosphorylation mediated by AT1R. We provided further characterization of MasR signaling mechanisms regarding its constitutive activity and response to putative ligands. This information could prove useful to better describe MasR physiological role and development of therapeutic agents that could modulate its action.

5.
Physiol Rep ; 6(16): e13824, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30156060

RESUMO

The renin-angiotensin system modulates insulin action. Angiotensin type 1 receptor exerts a deleterious effect, whereas the angiotensin type 2 receptor (AT2R) appears to have beneficial effects providing protection against insulin resistance and type 2 diabetes. To further explore the role of the AT2R on insulin action and glucose homeostasis, in this study we administered C57Bl/6 mice with the synthetic agonist of the AT2R C21 for 12 weeks (1 mg/kg per day; ip). Vehicle-treated animals were used as control. Metabolic parameters, glucose, and insulin tolerance, in vivo insulin signaling in main insulin-target tissues as well as adipose tissue levels of adiponectin, and TNF-α were assessed. C21-treated animals displayed decreased glycemia together with unaltered insulinemia, increased insulin sensitivity, and increased glucose tolerance compared to nontreated controls. This was accompanied by a significant decrease in adipocytes size in epididymal adipose tissue and significant increases in both adiponectin and UCP-1 expression in this tissue. C21-treated mice showed an increase in both basal Akt and ERK1/2 phosphorylation levels in the liver, and increased insulin-stimulated Akt activation in adipose tissue. This positive modulation of insulin action induced by C21 appeared not to involve the insulin receptor. In C21-treated mice, adipose tissue and skeletal muscle became unresponsive to insulin in terms of ERK1/2 phosphorylation levels. Present data show that chronic pharmacological activation of AT2R with C21 increases insulin sensitivity in mice and indicate that the AT2R has a physiological role in the conservation of insulin action.


Assuntos
Resistência à Insulina/fisiologia , Receptor Tipo 2 de Angiotensina/agonistas , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Adipócitos/efeitos dos fármacos , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Tamanho Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos/métodos , Teste de Tolerância a Glucose , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Receptor Tipo 2 de Angiotensina/fisiologia , Transdução de Sinais , Sulfonamidas/administração & dosagem , Tiofenos/administração & dosagem , Fator de Necrose Tumoral alfa/metabolismo
6.
Oncotarget ; 7(11): 11889-98, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26933812

RESUMO

Thioredoxin-1 (Trx1) protects the heart from ischemia/reperfusion (I/R) injury. Given that the age at which the first episode of coronary disease takes place has considerably decreased, life at middle-aged (MA) emerges as a new field of study. The aim was determine whether infarct size, Trx1 expression and activity, Akt and GSK-3ß were altered in young (Y) and MA mice overexpressing cardiac Trx1, and in a dominant negative (DN-Trx1) mutant of Trx1. Langendorff-perfused hearts were subjected to 30 minutes of ischemia and 120 minutes of reperfusion (R). We used 3 and 12 month-old male of wild type (WT), Trx1, and DN-Trx1. Trx1 overexpression reduced infarct size in young mice (WT-Y: 46.8±4.1% vs. Trx1-Y: 27.6±3.5%, p < 0.05). Trx1 activity was reduced by 52.3±3.2% (p < 0.05) in Trx1-MA, accompanied by an increase in nitration by 17.5±0.9%, although Trx1 expression in transgenic mice was similar between young and middle-aged. The expression of p-Akt and p-GSK-3ß increased during reperfusion in Trx1-Y. DN-Trx1 mice showed neither reduction in infarct size nor Akt and GSK-3ß phosphorylation. Our data suggest that the lack of protection in Trx1 middle-aged mice even with normal Trx1 expression may be associated to decreased Trx1 activity, increased nitration and inhibition of p-Akt and p-GSK-3ß.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Coração/fisiologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Estresse Oxidativo , Tiorredoxinas/metabolismo , Animais , Humanos , Camundongos , Camundongos Transgênicos , Traumatismo por Reperfusão Miocárdica/patologia , Fosforilação , Tiorredoxinas/genética
7.
J Endocrinol ; 221(2): 215-27, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24756097

RESUMO

The renin-angiotensin system (RAS) plays a crucial role in the regulation of physiological homeostasis and diseases such as hypertension, coronary artery disease, and chronic renal failure. In this cascade, the angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/AT1 receptor axis induces pathological effects, such as vasoconstriction, cell proliferation, and fibrosis, while the ACE2/Ang-(1-7)/Mas receptor axis is protective for end-organ damage. The altered function of the RAS could be a contributing factor to the cardiac and renal alterations induced by GH excess. To further explore this issue, we evaluated the consequences of chronic GH exposure on the in vivo levels of Ang II, Ang-(1-7), ACE, ACE2, and Mas receptor in the heart and the kidney of GH-transgenic mice (bovine GH (bGH) mice). At the age of 7-8 months, female bGH mice displayed increased systolic blood pressure (SBP), a high degree of both cardiac and renal fibrosis, as well as increased levels of markers of tubular and glomerular damage. Angiotensinogen abundance was increased in the liver and the heart of bGH mice, along with a concomitant increase in cardiac Ang II levels. Importantly, the levels of ACE2, Ang-(1-7), and Mas receptor were markedly decreased in both tissues. In addition, Ang-(1-7) administration reduced SBP to control values in GH-transgenic mice, indicating that the ACE2/Ang-(1-7)/Mas axis is involved in GH-mediated hypertension. The data indicate that the altered expression profile of the ACE2/Ang-(1-7)/Mas axis in the heart and the kidney of bGH mice could contribute to the increased incidence of hypertension, cardiovascular, and renal alterations observed in these animals.


Assuntos
Angiotensina I/metabolismo , Hormônio do Crescimento/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Angiotensina I/farmacologia , Enzima de Conversão de Angiotensina 2 , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Regulação para Baixo/genética , Feminino , Hormônio do Crescimento/genética , Hipertensão/genética , Hipertensão/metabolismo , Nefropatias/genética , Nefropatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fragmentos de Peptídeos/farmacologia , Peptidil Dipeptidase A/genética , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
8.
Clin Sci (Lond) ; 126(9): 613-30, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24450744

RESUMO

The prevalence of Type 2 diabetes mellitus is predicted to increase dramatically over the coming years and the clinical implications and healthcare costs from this disease are overwhelming. In many cases, this pathological condition is linked to a cluster of metabolic disorders, such as obesity, systemic hypertension and dyslipidaemia, defined as the metabolic syndrome. Insulin resistance has been proposed as the key mediator of all of these features and contributes to the associated high cardiovascular morbidity and mortality. Although the molecular mechanisms behind insulin resistance are not completely understood, a negative cross-talk between AngII (angiotensin II) and the insulin signalling pathway has been the focus of great interest in the last decade. Indeed, substantial evidence has shown that anti-hypertensive drugs that block the RAS (renin-angiotensin system) may also act to prevent diabetes. Despite its long history, new components within the RAS continue to be discovered. Among them, Ang-(1-7) [angiotensin-(1-7)] has gained special attention as a counter-regulatory hormone opposing many of the AngII-related deleterious effects. Specifically, we and others have demonstrated that Ang-(1-7) improves the action of insulin and opposes the negative effect that AngII exerts at this level. In the present review, we provide evidence showing that insulin and Ang-(1-7) share a common intracellular signalling pathway. We also address the molecular mechanisms behind the beneficial effects of Ang-(1-7) on AngII-mediated insulin resistance. Finally, we discuss potential therapeutic approaches leading to modulation of the ACE2 (angiotensin-converting enzyme 2)/Ang-(1-7)/Mas receptor axis as a very attractive strategy in the therapy of the metabolic syndrome and diabetes-associated diseases.


Assuntos
Angiotensina I/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina , Insulina/metabolismo , Fragmentos de Peptídeos/metabolismo , Sistema Renina-Angiotensina , Transdução de Sinais , Angiotensina II/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Enzima de Conversão de Angiotensina 2 , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Hipoglicemiantes/uso terapêutico , Peptidil Dipeptidase A/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
9.
Growth Horm IGF Res ; 22(6): 224-33, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22947377

RESUMO

OBJECTIVE: Growth hormone (GH) resistance leads to enhanced insulin sensitivity, decreased systolic blood pressure and increased lifespan. The aim of this study was to determine if there is a shift in the balance of the renin-angiotensin system (RAS) towards the ACE2/Ang-(1-7)/Mas receptor axis in the heart and the kidney of a model of GH resistance and retarded aging, the GH receptor knockout (GHR-/-) mouse. DESIGN: RAS components were evaluated in the heart and the kidney of GHR-/- and control mice by immunohistochemistry and Western blotting (n=12 for both groups). RESULTS: The immunostaining of Ang-(1-7) was increased in both the heart and the kidney of GHR-/- mice. These changes were concomitant with an increased immunostaining of the Mas receptor and ACE2 in both tissues. The immunostaining of AT1 receptor was reduced in heart and kidney of GHR-/- mice while that of AT2 receptor was increased in the heart and unaltered in the kidney. Ang II, ACE and angiotensinogen levels remained unaltered in the heart and the kidney of GH resistant mice. These results were confirmed by Western blotting and correlated with a significant increase in the abundance of the endothelial nitric oxide synthase in both tissues. CONCLUSIONS: The shift within the RAS towards an exacerbation of the ACE2/Ang-(1-7)/Mas receptor axis observed in GHR-/- mice could be related to a protective role in cardiac and renal function; and thus, possibly contribute to the decreased incidence of cardiovascular diseases displayed by this animal model of longevity.


Assuntos
Angiotensina I/genética , Rim/metabolismo , Miocárdio/metabolismo , Fragmentos de Peptídeos/genética , Peptidil Dipeptidase A/genética , Proteínas Proto-Oncogênicas/genética , Receptores Acoplados a Proteínas G/genética , Receptores da Somatotropina/genética , Regulação para Cima , Angiotensina I/biossíntese , Enzima de Conversão de Angiotensina 2 , Animais , Camundongos , Camundongos Knockout , Fragmentos de Peptídeos/biossíntese , Peptidil Dipeptidase A/biossíntese , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/biossíntese , Receptores Acoplados a Proteínas G/biossíntese
10.
Regul Pept ; 177(1-3): 1-11, 2012 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-22561450

RESUMO

Angiotensin (Ang)-(1-7) stimulates proteins belonging to the insulin signaling pathway and ameliorates the Ang II negative effects at this level. However, up to date, receptors involved and mechanisms behind these observations remain unknown. Accordingly, in the present study, we explored the in vivo effects of antagonism of the Ang-(1-7) specific Mas receptor on insulin signal transduction in rat insulin-target tissues. We evaluated the acute modulation of insulin-stimulated phosphorylation of Akt, GSK-3ß (Glycogen synthase kinase-3ß) and AS160 (Akt substrate of 160kDa) by Ang-(1-7) and/or Ang II in the presence and absence of the selective Mas receptor antagonist A-779 in insulin-target tissues of normal rats. Also using A-779, we determined whether the Mas receptor mediates the improvement of insulin sensitivity exerted by chronic Ang-(1-7) treatment in fructose-fed rats (FFR), a model of insulin resistance, dyslipidemia and mild hypertension. The two major findings of the present work are as follows; 1) Ang-(1-7) attenuates acute Ang II-mediated inhibition of insulin signaling components in normal rats via a Mas receptor-dependent mechanism; and 2). The Mas receptor appears to be involved in beneficial effects of Ang-(1-7) on the phosphorylation of crucial insulin signaling mediators (Akt, GSK-3ß and AS160), in liver, skeletal muscle and adipose tissue of FFR. These results shed light into the mechanism by which Ang-(1-7) exerts its positive physiological modulation of insulin actions in classical metabolic tissues and reinforces the central role of Akt in these effects.


Assuntos
Angiotensina I/farmacologia , Insulina/metabolismo , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Angiotensina I/administração & dosagem , Angiotensina II/análogos & derivados , Angiotensina II/farmacologia , Animais , Pressão Sanguínea , Dislipidemias/metabolismo , Dislipidemias/patologia , Frutose/administração & dosagem , Proteínas Ativadoras de GTPase/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Hipertensão/metabolismo , Hipertensão/patologia , Resistência à Insulina , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Fosforilação , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/antagonistas & inibidores
11.
Am J Physiol Renal Physiol ; 302(12): F1606-15, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22492942

RESUMO

Angiotensin (ANG)-(1-7) is known to attenuate diabetic nephropathy; however, its role in the modulation of renal inflammation and oxidative stress in type 2 diabetes is poorly understood. Thus in the present study we evaluated the renal effects of a chronic ANG-(1-7) treatment in Zucker diabetic fatty rats (ZDF), an animal model of type 2 diabetes and nephropathy. Sixteen-week-old male ZDF and their respective controls [lean Zucker rats (LZR)] were used for this study. The protocol involved three groups: 1) LZR + saline, 2) ZDF + saline, and 3) ZDF + ANG-(1-7). For 2 wk, animals were implanted with subcutaneous osmotic pumps that delivered either saline or ANG-(1-7) (100 ng·kg(-1)·min(-1)) (n = 4). Renal fibrosis and tissue parameters of oxidative stress were determined. Also, renal levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), ED-1, hypoxia-inducible factor-1α (HIF-1α), and neutrophil gelatinase-associated lipocalin (NGAL) were determined by immunohistochemistry and immunoblotting. ANG-(1-7) induced a reduction in triglyceridemia, proteinuria, and systolic blood pressure (SBP) together with a restoration of creatinine clearance in ZDF. Additionally, ANG-(1-7) reduced renal fibrosis, decreased thiobarbituric acid-reactive substances, and restored the activity of both renal superoxide dismutase and catalase in ZDF. This attenuation of renal oxidative stress proceeded with decreased renal immunostaining of IL-6, TNF-α, ED-1, HIF-1α, and NGAL to values similar to those displayed by LZR. Angiotensin-converting enzyme type 2 (ACE2) and ANG II levels remained unchanged after treatment with ANG-(1-7). Chronic ANG-(1-7) treatment exerts a renoprotective effect in ZDF associated with a reduction of SBP, oxidative stress, and inflammatory markers. Thus ANG-(1-7) emerges as a novel target for treatment of diabetic nephropathy.


Assuntos
Angiotensina I/uso terapêutico , Nefropatias Diabéticas/tratamento farmacológico , Rim/efeitos dos fármacos , Fragmentos de Peptídeos/uso terapêutico , Proteinúria/tratamento farmacológico , Proteínas de Fase Aguda/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Fibrose , Hipertrigliceridemia/tratamento farmacológico , Hipertrigliceridemia/metabolismo , Hipertrigliceridemia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interleucina-6/metabolismo , Rim/metabolismo , Rim/patologia , Lipocalina-2 , Lipocalinas/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Proteinúria/metabolismo , Proteinúria/patologia , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Ratos Zucker , Fator de Necrose Tumoral alfa/metabolismo
12.
J Hypertens ; 29(8): 1613-23, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21720265

RESUMO

OBJECTIVE: Atenolol, a first-generation ß-blocker, effectively reduces blood pressure, although its use in metabolic syndrome remains controversial. Accordingly, this study evaluated the renal effects of nebivolol, a third-generation ß-blocker with additional vasodilating activity, versus those of atenolol in an animal model of diabetic nephropathy. METHODS: Zucker diabetic fatty (ZDF) rats and control lean Zucker rats (LZRs) were treated for 6 months with either nebivolol or atenolol. Blood pressure, circulating insulin, triglycerides, cholesterol and glucose, as well as proteinuria and creatinine clearance were evaluated. Thiobarbituric acid-reactive species, reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, CuZn superoxide dismutase, catalase and glutathione peroxidase were determined as biomarkers of oxidative stress in kidney homogenates. Expression of transforming growth factor-ß1 (TGF-ß1), α-smooth muscle actin (α-SMA), collagen type I and III, plasminogen activator inhibitor-1 (PAI-1), vascular and platelet endothelial cell adhesion molecule-1 (VCAM-1 and PECAM-1, respectively) were determined by immunohistochemistry. Fibrosis was evaluated by light microscopy. RESULTS: Both drugs induced a similar control of blood pressure throughout the study. Contrary to atenolol, nebivolol showed a beneficial impact on lipid profile, preserved glomerular filtration rate, reduced proteinuria and induced a positive regulation of structural podocyte proteins (nephrin and podocin) expression. Additionally nebivolol decreased oxidative stress biomarkers, induced a substantial reduction in the accumulation of extracellular matrix proteins, down-regulated the renal expression of VCAM-1, monocyte chemotactic protein-1 (MCP-1), ED1, α-SMA, TGF-ß1 and PAI-1 and up-regulated the expression of PECAM-1. CONCLUSION: Our current finding underscores the importance of this therapy in hypertensive states concomitant with altered lipid and glucose metabolism.


Assuntos
Antagonistas de Receptores Adrenérgicos beta 1/uso terapêutico , Benzopiranos/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/prevenção & controle , Etanolaminas/uso terapêutico , Síndrome Metabólica/complicações , Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Animais , Atenolol/farmacologia , Atenolol/uso terapêutico , Benzopiranos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Etanolaminas/farmacologia , Fibrose , Taxa de Filtração Glomerular/efeitos dos fármacos , Taxa de Filtração Glomerular/fisiologia , Glucose/metabolismo , Rim/patologia , Rim/fisiopatologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Masculino , Nebivolol , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos , Ratos Zucker , Fatores de Tempo
13.
Hepatology ; 53(6): 2097-106, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21391228

RESUMO

UNLABELLED: Galectin-1 (Gal-1), a widely expressed ß-galactoside-binding protein, exerts pleiotropic biological functions. Gal-1 is up-regulated in hepatocarcinoma cells, although its role in liver pathophysiology remains uncertain. We investigated the effects of Gal-1 on HepG2 hepatocellular carcinoma (HCC) cell adhesion and polarization. Soluble and immobilized recombinant Gal-1 (rGal-1) promoted HepG2 cell adhesion to uncoated plates and also increased adhesion to laminin. Antibody-mediated blockade experiments revealed the involvement of different integrins as critical mediators of these biological effects. In addition, exposure to rGal-1 markedly accelerated the development of apical bile canaliculi as shown by TRITC-phalloidin labeling and immunostaining for multidrug resistance associated-protein 2 (MRP2). Notably, rGal-1 did not interfere with multidrug resistance protein 1/P-glycoprotein or MRP2 apical localization, neither with transfer nor secretion of 5-chloromethylfluorescein diacetate through MRP2. Stimulation of cell adhesion and polarization by rGal-1 was abrogated in the presence of thiodigalactoside, a galectin-specific sugar, suggesting the involvement of protein-carbohydrate interactions in these effects. Additionally, Gal-1 effects were abrogated in the presence of wortmmanin, PD98059 or H89, suggesting involvement of phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase and cyclic adenosine monophosphate-dependent protein kinase signaling pathways in these functions. Finally, expression levels of this endogenous lectin correlated with HCC cell adhesion and polarization and up-regulation of Gal-1-favored growth of hepatocarcinoma in vivo. CONCLUSION: Our results provide the first evidence of a role of Gal-1 in modulating HCC cell adhesion, polarization, and in vivo tumor growth, with critical implications in liver pathophysiology.


Assuntos
Carcinoma Hepatocelular/fisiopatologia , Polaridade Celular/fisiologia , Proliferação de Células , Galectina 1/fisiologia , Neoplasias Hepáticas/fisiopatologia , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Humanos , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Transdução de Sinais/fisiologia
14.
Am J Physiol Renal Physiol ; 300(1): F272-82, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20962118

RESUMO

Angiotensin (ANG)-(1-7) constitutes an important functional end-product of the renin-angiotensin-aldosterone system that acts to balance the physiological actions of ANG II. In the kidney, ANG-(1-7) exerts beneficial effects by inhibiting growth-promoting pathways and reducing proteinuria. We examined whether a 2-wk treatment with a daily dose of ANG-(1-7) (0.6 mg·kg(-1)·day(-1)) exerts renoprotective effects in salt-loaded stroke-prone spontaneously hypertensive rats (SHRSP). Body weight, glycemia, triglyceridemia, cholesterolemia, as well as plasma levels of Na+ and K+ were determined both at the beginning and at the end of the treatment. Also, the weekly evolution of arterial blood pressure, proteinuria, and creatinine clearance was evaluated. Renal fibrosis was determined by Masson's trichrome staining. Interleukin (IL)-6, tumor necrosis factor (TNF)-α, and nuclear factor-κB (NF-κB) levels were determined by immunohistochemistry and confirmed by Western blotting analysis. The levels of glomerular nephrin were assessed by immunofluorescence. Chronic administration of ANG-(1-7) normalized arterial pressure, reduced glycemia and triglyceridemia, improved proteinuria, and ameliorated structural alterations in the kidney of SHRSP as shown by a restoration of glomerular nephrin levels as detected by immunofluorescence. These results were accompanied with a decrease in both the immunostaining and abundance of IL-6, TNF-α, and NF-κB. In this context, the current study provides strong evidence for a protective role of ANG-(1-7) in the kidney.


Assuntos
Angiotensina I/uso terapêutico , Interleucina-6/metabolismo , Rim/efeitos dos fármacos , NF-kappa B/metabolismo , Fragmentos de Peptídeos/uso terapêutico , Proteinúria/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Rim/patologia , Masculino , Proteínas de Membrana/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Cloreto de Sódio/farmacologia
15.
Regul Pept ; 163(1-3): 57-61, 2010 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-20433878

RESUMO

The aim of the present study was to determine if insulin can modulate the pressor response to angiotensin II at brain level in normotensive rats. Anaesthetized male rats were intracerebroventricularly infused with insulin (12 mU/h, n=15) or Ringer's solution as vehicle (n=15) for 2 h. Immediately, changes in mean arterial pressure (MAP) in response to an intracerebroventricular subpressor dose of angiotensin II (5 pmol, n=10) or vehicle (n=5) were measured for 10 min. Then, hypothalami were removed and Akt and ERK1/2 phosphorylation levels were determined. In other subset of animals, PD98059 (MAPK inhibitor) or vehicle were intracerebroventricularly administered previously to insulin perfusion for 2 h and changes in MAP in response to intracerebroventricular angiotensin II (5 pmol) injection were evaluated for 10 min (n=6 for each group). Angiotensin II did not modify MAP in vehicle pre-treated rats, but increased MAP in insulin pre-treated animals. Insulin significantly increased Akt phosphorylation, but no changes were observed after angiotensin II injection in vehicle-pretreated animals. Angiotensin II or insulin infusion increased in more than two fold phospho-ERK 1/2 hypothalamic levels. Animals that received insulin infusion followed by Ang II injection presented 4.5 higher values than those which received vehicle, and nearly twice than those who received Ang II without insulin pre-treatment. PD98059 administration abolished the blood pressure response exerted by angiotensin II in insulin pre-treated rats. In conclusion, centrally administered insulin potentiates the pressor effects to angiotensin II, suggesting a novel mechanism, possibly involving MAPK activation, by which insulin influences blood pressure control at central level.


Assuntos
Angiotensina II/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Insulina/administração & dosagem , Insulina/farmacologia , Angiotensina II/administração & dosagem , Angiotensina II/antagonistas & inibidores , Animais , Flavonoides/farmacologia , Masculino , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ratos , Ratos Sprague-Dawley
16.
Regul Pept ; 161(1-3): 1-7, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20188769

RESUMO

The in vivo effect of angiotensin (ANG)-(1-7) on the activation of insulin signaling transduction in rat extracardiac tissues is unknown. Thus, in the present study, we evaluated the ability of ANG-(1-7) to stimulate the phosphorylation of Akt, a main mediator of insulin action in rat extracardiac tissues (adipose tissue, liver and skeletal muscle). We proved that ANG-(1-7) induces the phosphorylation of Akt at both threonine 308 and serine 473 in all tissues analyzed. Selective antagonism of the Mas receptor with A779 blocked the ANG-(1-7)-induced Akt phosphorylation in extracardiac tissues. Reinforcing this evidence, we determined that ANG-(1-7) induces the in vivo activation of the downstream target of Akt, glycogen synthase kinase-3beta in liver and skeletal muscle. Moreover, in every tissue analyzed, the presence of the Mas receptor was detected by immunohistochemical analysis. Based on the current results, we postulate that ANG-(1-7) could be a positive physiological contributor to the actions of insulin in extracardiac tissues. Therefore, our findings extend the possibilities for new approaches in the study of ANG-(1-7)/Mas receptor axis and show the therapeutic potential of ANG-(1-7) in the treatment of metabolic disorders such as insulin resistance as well as other disorders associated with diminished Akt activity.


Assuntos
Angiotensina I/farmacologia , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tecido Adiposo/metabolismo , Angiotensina II/análogos & derivados , Angiotensina II/farmacologia , Animais , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Immunoblotting , Imuno-Histoquímica , Técnicas In Vitro , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fosforilação/efeitos dos fármacos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Am J Physiol Heart Circ Physiol ; 298(3): H1003-13, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20061544

RESUMO

The present study examined whether chronic treatment with angiotensin (ANG)-(1-7) reduces cardiac remodeling and inhibits growth-promoting signaling pathways in the heart of fructose-fed rats (FFR), an animal model of insulin resistance. Sprague-Dawley rats were fed either normal rat chow (control) or the same diet plus 10% fructose in drinking water. For the last 2 wk of a 6-wk period of the corresponding diet, control and FFR were implanted with osmotic pumps that delivered ANG-(1-7) (100 ng.kg(-1).min(-1)). A subgroup of each group of animals (control or FFR) underwent a sham surgery. We determined heart weight, myocyte diameter, interstitial fibrosis, and perivascular collagen type III deposition as well as the phosphorylation degree of ERK1/2, JNK1/2, and p38MAPK. FFR showed a mild hypertension that was significantly reduced after ANG-(1-7) treatment. Also, FFR displayed higher ANG II circulating and local levels in the heart that remained unaltered after chronic ANG-(1-7) infusion. An increased heart-to-body weight ratio, myocyte diameter, as well as left ventricular fibrosis and perivascular collagen type III deposition were detected in the heart of FFR. Interestingly, significant improvements in these cardiac alterations were obtained after ANG-(1-7) treatment. Finally, FFR that received ANG-(1-7) chronically displayed significantly lower phosphorylation levels of ERK1/2, JNK1/2, and p38MAPK. The beneficial effects obtained by ANG-(1-7) were associated with normal values of Src-homology 2-containing protein-tyrosine phosphatase-1 (SHP-1) activity in the heart. In conclusion, chronic ANG-(1-7) treatment ameliorated cardiac hypertrophy and fibrosis and attenuated the growth-promoting pathways in the heart. These findings show an important protective role of ANG-(1-7) in the heart of insulin-resistant rats.


Assuntos
Angiotensina I/farmacologia , Frutose/efeitos adversos , Hipertensão/fisiopatologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Resistência à Insulina , Fragmentos de Peptídeos/farmacologia , Remodelação Ventricular/efeitos dos fármacos , Angiotensina II/metabolismo , Animais , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/fisiologia , Carboidratos da Dieta/efeitos adversos , Modelos Animais de Doenças , Hipertensão/etiologia , Hipertensão/metabolismo , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Insulina/sangue , Masculino , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Ratos , Ratos Sprague-Dawley
18.
Growth Horm IGF Res ; 20(2): 118-26, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20022531

RESUMO

CONTEXT: Growth hormone (GH) is an anabolic hormone that regulates growth and metabolism. Ames dwarf mice are natural mutants for Prop1, with impaired development of anterior pituitary and undetectable levels of circulating GH, prolactin and TSH. They constitute an endocrine model of life-long GH-deficiency. The main signaling cascades activated by GH binding to its receptor are the JAK2/STATs, PI-3K/Akt and the MAPK Erk1/2 pathways. OBJECTIVES: We have previously reported that GH-induced STAT5 activation was higher in Ames dwarf mice liver compared to non-dwarf controls. The aim of this study was to evaluate the principal components of the main GH-signaling pathways under GH-deficiency in liver and skeletal muscle, another GH-target tissue. METHODS: Ames dwarf mice and their non-dwarf siblings were assessed. Animals were injected i.p. with GH or saline 15min before tissue removal. Protein content and phosphorylation of signaling mediators were determined by immunoblotting of tissue solubilizates. RESULTS: GH was able to induce STAT5 and STAT3 tyrosine phosphorylation in both liver and muscle, but the response was higher for Ames dwarf mice than for non-dwarf controls. When Erk1/2 activation was assessed in liver, only dwarf mice showed GH-induced phosphorylation, while in muscle no response to the hormone was found in either genotype. GH-induced Akt phosphorylation at Ser473 in liver was only detected in dwarf mice. In skeletal muscle, both normal and dwarf mice responded to a GH stimulus, although dwarf mice presented higher GH activation levels. The phosphorylation of GSK-3, a substrate of Akt, increased upon hormone stimulation only in dwarf mice in both tissues. In contrast, no differences in the phosphorylation of mTOR, another substrate of Akt, were observed after GH stimulus, either in normal or dwarf mice in liver, while we were unable to determine mTOR in muscle. Protein content of GH-receptor and of the signaling mediators studied did not vary between normal and dwarf animals in the assessed tissues. CONCLUSION: These results show that several components of the main GH-signaling pathways exhibit enhanced sensitivity to the hormone in liver and muscle of Ames dwarf mice.


Assuntos
Nanismo Hipofisário/metabolismo , Hormônio do Crescimento/farmacologia , Proteínas de Homeodomínio/genética , Fígado/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/genética , Nanismo Hipofisário/genética , Nanismo Hipofisário/patologia , Quinase 3 da Glicogênio Sintase/metabolismo , Hormônio do Crescimento/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Transgênicos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores da Somatotropina/agonistas , Receptores da Somatotropina/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR
19.
J Hypertens ; 27(12): 2409-20, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19901849

RESUMO

BACKGROUND: Angiotensin II (Ang II) has been shown to contribute to the pathogenesis of hypertension and insulin resistance. In addition, administration of selective Ang II type-1 receptor blockers has been shown to improve insulin sensitivity. However, only a few studies have addressed the molecular mechanisms involved in this association. OBJECTIVE AND DESIGN: The current study was undertaken to determine whether an Ang II receptor blocker (irbesartan) is effective in improving insulin resistance in adipose tissue from obese Zucker rats, a model of metabolic syndrome. METHODS: Ten-week-old male obese Zucker rats (fa/fa) were treated daily with either vehicle or 50 mg/kg irbesartan for 6 months, and their age-matched lean (+/?) (lean Zucker rats) was used as a control. We determined systolic blood pressure (SBP), together with plasma levels of insulin, triglycerides, cholesterol and glucose. In addition, we evaluated insulin signaling through the insulin receptor/insulin receptor substrate-1/phosphatidylinositol 3 kinase/Akt/glucose transporter 4 pathway as well as the inflammatory status of adipose tissue. RESULTS: Obese Zucker rats displayed hyperglycemia, hypertriglyceridemia, hyperinsulinemia and hypercholesterolemia and increased SBP together with decreased activation of insulin signaling through the insulin receptor/insulin receptor substrate-1/phosphatidylinositol 3 kinase/Akt pathway in adipose tissue as well as increased adipocytes size, macrophage infiltration and augmented levels of inflammatory mediators such tumor necrosis factor-alpha, monocyte chemoattractant protein-1 and Ang II. Chronic irbesartan treatment resulted in an improvement of all alterations. CONCLUSION: The present study provides substantial information that demonstrates that long-term selective Ang II blockade ameliorates insulin resistance in adipose tissue from a model of metabolic syndrome via a mechanism that could involve the modulation of insulin signaling.


Assuntos
Adipócitos/efeitos dos fármacos , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Resistência à Insulina/fisiologia , Síndrome Metabólica/prevenção & controle , Obesidade/tratamento farmacológico , Tetrazóis/uso terapêutico , Adipócitos/metabolismo , Adipócitos/patologia , Animais , Glicemia/análise , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Transportador de Glucose Tipo 4/metabolismo , Insulina/sangue , Proteínas Substratos do Receptor de Insulina/metabolismo , Irbesartana , Lipídeos/sangue , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Obesidade/genética , Obesidade/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Ratos Zucker , Transdução de Sinais
20.
J Endocrinol ; 201(2): 185-97, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19251743

RESUMO

The I kappaB kinase-beta (IKK-beta)/nuclear factor-kappaB signaling pathway has been suggested to link inflammation with obesity and insulin resistance. In addition, angiotensin (Ang) II is able to induce insulin resistance and an inflammatory state through Ang II receptor type 1 (AT1R). Accordingly, we examined whether inhibition of AT1R with irbesartan (IRB) can protect against the development of insulin resistance in obese Zucker rats (OZRs). IRB-treatment improved the insulin-stimulated insulin receptor (IR) phosphorylation at tyrosine (Tyr) residues 1158, 1162, 1163 (involved in activation of the IR kinase) and at Tyr972 (involved in substrate recognition). AT1R blockade also originated a dramatic increase in the phosphorylation of Akt and glycogen synthase kinase-3beta. This was accompanied by a decrease in phosphorylation of IR on serine (Ser) 994, a residue that seems to be implicated in the regulation of IR kinase in OZR. In this study, we demonstrated that Ser994 of IR is a direct substrate for TANK-binding kinase 1 (TBK1), a new member of the IKK-related kinase family. TBK1 was found to co-immunoprecipitate with the IR, in the liver of OZR supporting an in vivo association between the IR and TBK1. Interestingly, a marked increase in the association between TBK1 and the IR was found in the liver of OZR as well as in other models of insulin resistance/diabetes. Taken together, these findings suggest that TBK1 could be involved in the insulin resistance mechanism related with IR Ser994 phosphorylation in a genetic model of diabetes.


Assuntos
Inflamação/metabolismo , Resistência à Insulina , Proteínas Serina-Treonina Quinases/fisiologia , Receptor de Insulina/metabolismo , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Inflamação/complicações , Inflamação/patologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/complicações , Obesidade/metabolismo , Obesidade/patologia , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Zucker , Receptor de Insulina/química , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA