Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(19): 14393-14406, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38712786

RESUMO

Smart water injection is a technology that allows changing the wettability of the oil rock by injecting water at different salinities, in a cheap and environmentally friendly way compared to other traditional methods. In this study, the individual effect of some typical salts on the wettability of the (104) surface of calcite toward non-polar and polar crude oil models was explored by molecular dynamics as a function of the salinity and pH. The results obtained show that the electrical double layer plays a principal role in the detachment of crude oil models. The divalent ion salts, i.e., CaCl2, CaSO4, MgCl2, and MgSO4, do not form the electrical double layer on calcite, but salts of NaCl and Na2SO4 form it. Moreover, the surface affinity of calcite to the non-polar crude oil is not affected by the salinity. However, the affinity of the calcite surface toward polar crude is affected by salinity and pH conditions. This research provides new insights into the action mechanisms that could help optimize its uses in enhanced oil recovery.

2.
J Phys Chem B ; 127(39): 8432-8445, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37733881

RESUMO

Nicotinamide adenine dinucleotide (NADH) is an important enzyme cofactor with emissive properties that allow it to be used in fluorescence microscopies to study cell metabolism. Its oxidized form NAD+, on the other hand, is considered to produce negligible fluorescence. In this contribution, we describe the photophysics of the isolated nicotinamidic system in both its reduced and oxidized states. This was achieved through the study of model molecules that do not carry the adenine nucleotide since its absorbance would overlap with the absorption spectrum of the nicotinamidic chromophores. We studied three model molecules: nicotinamide (niacinamide, an oxidized form without nitrogen substitution), the oxidized chromophore 1-benzyl-3-carbamoyl-pyridinium bromide (NBzOx), and its reduced form 1-benzyl-1,4-dihydronicotinamide (NBz). For a full understanding of the dynamics, we performed both femtosecond-resolved emission and transient absorption experiments. The oxidized systems, nicotinamide and NBzOx, have similar photophysics, where the originally excited bright state decays on an ultrafast timescale of less than 400 fs. The depopulation of this state is followed by excited-state positive absorption signals, which evolve in two timescales: the first one is from 1 to a few picoseconds and is followed by a second decaying component of 480 ps for nicotinamide in water and of 80-90 ps for nicotinamide in methanol and NBzOx in aqueous solution. The long decay times are assigned as the S1 lifetimes populated from the original higher-lying bright singlet, where this state is nonemissive but can be detected by transient absorption. While for NBzOx in aqueous solution and for nicotinamide in methanol, the S1 signal decays to the solvent-only level, for the aqueous solutions of nicotinamide, a small transient absorption signal remains after the 480 ps decay. This residual signal was assigned to a small population of triplet states formed during the slower S1 decay for nicotinamide in water. The experimental results were complemented by XMS-CASPT2 calculations, which reveal that in the oxidized forms, the rapid evolution of the initial π-π* state is due to a direct crossing with lower-energy dark n-π* singlet states. This coincides with the experimental observation of long-lived nonemissive states (80 to 480 ps depending on the system). On the other hand, the reduced model compound NBz has a long-lived emissive π-π* S1 state, which decays with a 510 ps time constant, similarly to the parent compound NADH. This is consistent with the XMS-CASPT2 calculations, which show that for the reduced chromophore, the dark states lie at higher energies than the bright π-π* S1 state.

3.
Phys Chem Chem Phys ; 24(18): 11412-11419, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35504048

RESUMO

The wettability of graphene oxide functionalized with N-alkylamines was studied by molecular dynamics simulations. Six different N-alkylamines and two functionalization degrees were reviewed. The nucleophilic ring-opening reaction mechanism between the N-alkylamines and epoxy functional groups of graphene oxide was considered to generate the atomistic models. Water contact angles increased with both the alkyl chain length and substitution degree. The Wenzel model was used to access the effect of both the surface roughness and alkyl chain length on wettability. The results indicated that functionalization introduces an important increase of surface roughness but its effect on wettability is countered by the alkyl chain length.

4.
J Phys Chem A ; 126(16): 2498-2510, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35436116

RESUMO

We have designed and synthesized two new cyaninic Nd3+ complexes where the lanthanide emission can be induced from simultaneous two-photon absorption followed by energy migration. These complexes correspond to a molecular design that uses an antenna ligand formed by the functionalization of a heptamethine dye with 5-ol-phenanthroline or 4-phenyl-terpyridine derivatives. These complexes employ the important nonlinear optical properties of symmetric polymethines to sensitize the lanthanide ion. We verified that simultaneous biphotonic excitation indirectly induces the 4F3/2 → 4I11/2 Nd3+ emission using femtosecond laser pulses tuned below the first electronic transition of the antenna. The simultaneous two-photon excitation events initially form the nonlinear-active second excited singlet of the polymethine antenna, which rapidly evolves into its first excited singlet. This state in turn induces the formation of the emissive Nd3+ states through energy transfer. The role of the first excited singlet of the antenna as the donor state in this process was verified through time resolution of the antenna's fluorescence. These measurements also provided the rates for antenna-lanthanide energy transfer, which indicate that the phenanthroline-type ligand is approximately five times more efficient for energy transfer than the phenyl-terpyridine derivative due to their relative donor-acceptor distances. The simultaneous two-photon excitation of this polymethine antenna allows for high spatial localization of the Nd3+excitation events.

5.
J Comput Chem ; 43(8): 556-567, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35106786

RESUMO

Thiophenols are chemical species with multiple desirable biological properties, including their primary and secondary antioxidant capacity. In this work, the repairing antioxidant activity of eight different thiophenols has been investigated for damaged leucine and tryptophane. The investigation was carried out employing quantum mechanical and transition state methods to calculate the thermodynamic and kinetic data of the reactions involved, while simulating the biological conditions at physiological pH and aqueous and lipidic medium. The analysis of the atomic charges and the spin densities at each of the points on the potential energy surface was the tool that allowed the elucidation of the reaction mechanisms through which thiophenols repair the oxidative damage caused to the amino acids leucine and tryptophan. It was found that thiophenols can repair leucine via a hydrogen atom transfer mechanism in a manner which is similar to the one used by glutathione to repair the carbon-centered radicals of guanosine. In addition, thiophenols can also restore tryptophane, a nitrogen-centered radical, via proton-coupled electron transfer and single electron transfer mechanisms. Moreover, both processes occur at close to diffusion-controlled rates.


Assuntos
Fenóis , Triptofano , Cinética , Leucina , Fenóis/química , Compostos de Sulfidrila
6.
Chem Commun (Camb) ; 57(25): 3123-3126, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33630983

RESUMO

We present a new design for non-linear optically responsive molecules based on a modular scheme where a polymethinic antenna section with important two-photon absorption properties is bonded to an isomerizable actuator section composed of a stilbenyl-azopyrrole unit. Upon two photon excitation, energy migration from the antenna-localized second singlet excited state to the stilbenyl-azopyrrole section allows for efficient indirect excitation and phototransformation of this actuator.

7.
Chem Commun (Camb) ; 54(97): 13710-13713, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30452023

RESUMO

The superoxide radical anion can repair oxidative damage. In particular, it was demonstrated that O2˙- can repair oxidized DNA by electron transfer, restoring the original structure of this important molecule. Acid-base equilibria have been considered, and the influence of the pH on the main reaction mechanism has been explored.


Assuntos
Dano ao DNA , DNA/química , Superóxidos/química , Ânions/química , Sítios de Ligação , Transporte de Elétrons , Concentração de Íons de Hidrogênio , Oxirredução
8.
Phys Chem Chem Phys ; 19(23): 15296-15309, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28569903

RESUMO

The results presented in this work demonstrate the high complexity of chemical reactions involving species with multiple acid-base equilibria. For the case study investigated here, it was necessary to consider two radical species for tryptophan (Trp(-H)˙ and Trp˙+) and three fractions for uric acid (H3Ur, H2Ur- and HUr2-) in order to properly reproduce the experimental results. At pH = 7.4, two main reaction mechanisms were identified: proton-electron sequential transfer (PEST) and sequential proton gain-electron transfer (SPGET). Combined, they account for more than 99% of the overall reaction, despite the fact that they involve minor species, i.e., H3Ur and Trp˙+, respectively. The excellent agreement between the calculated overall rate constant and the experimental value seems to support this proposal. In addition, if only the dominant species at pH = 7.4 (H2Ur- and Trp(-H)˙) were considered, there would be a large discrepancy with the experimental value (about 4 orders of magnitude), which also supports the finding that the key species in this case are not the most abundant ones. The influence of the pH on the kinetics of the investigated reaction was explored. It was found that the maximum repairing ability of uric acid does not occur at physiological pH, but at a more acidic pH (pH = 5.0).

9.
Phys Chem Chem Phys ; 19(10): 6969-6972, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28245013

RESUMO

π-π stacking interactions do not necessarily change the mechanism involved in the H transfer reaction between phenol and phenoxyl radicals. We propose that, in such cases, the e- is transferred between the π delocalized moieties, while the H+ is transferred between the donor and acceptor atoms.

10.
J Chem Inf Model ; 56(9): 1714-24, 2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27585285

RESUMO

Two empirically fitted parameters have been derived for 74 levels of theory. They allow fast and reliable pKa calculations using only the Gibbs energy difference between an acid and its conjugated base in aqueous solution (ΔGs(BA)). The parameters were obtained by least-squares fits of ΔGs(BA) vs experimental pKa values for phenols, carboxylic acids, and amines using training sets of 20 molecules for each chemical family. Test sets of 10 molecules per family-completely independent from the training set-were used to verify the reliability of the fitting parameters method. It was found that, except for MP2, deviations from experiments are lower than 0.5 pKa units. Moreover, mean unsigned errors lower than 0.35 pKa units were found for the 98.6%, 98.6%, and 94.6% of the tested levels of theory for phenols, carboxylic acids and amines, respectively. The parameters estimated here are expected to facilitate computationally based estimations of pKa values of species for which this magnitude is still unknown, with uncertainties similar to the experimental ones. However, the present study deals only with molecules of modest complexity, thus the reliability of the FP method for more complex systems remains to be tested.


Assuntos
Informática/métodos , Aminas/química , Ácidos Carboxílicos/química , Concentração de Íons de Hidrogênio , Fenóis/química , Estatística como Assunto , Termodinâmica , Água/química
11.
J Phys Chem A ; 120(27): 4634-42, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26378461

RESUMO

An assessment of multireference character in transition states is considered to be an important component in establishing the expected reliability of various electronic structure methods. In the present work, the multireference characters of the transition states and the forming and breaking of bonds for a large set of hydrogen abstraction reactions from phenolic compounds by peroxyl radicals have been analyzed using the T1, M, B1, and GB1 diagnostics. The extent of multireference character depends on the system and on the conditions under which the reaction takes place, and some systematic trends are observed. In particular, the multireference character is found to be reduced by solvation, the size of the phenolic compound, and deprotonation in aqueous solution. However, the deviations of calculated rate constants from experimental ones are not correlated with the extent of multireference character. The performance of single-determinant density functional theory was investigated for the kinetics of these reactions by comparing calculated rate constants to experimental data; the results from these analyses showed that the M05 functional performs well for the task at hand.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA