Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Skelet Muscle ; 13(1): 20, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38044436

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked disease caused by mutations in DMD gene and loss of the protein dystrophin, which ultimately leads to myofiber membrane fragility and necrosis, with eventual muscle atrophy and contractures. Affected boys typically die in their second or third decade due to either respiratory failure or cardiomyopathy. Among the developed therapeutic strategies for DMD, gene therapy approaches partially restore micro-dystrophin or quasi-dystrophin expression. However, despite extensive attempts to develop definitive therapies for DMD, the standard of care remains corticosteroid, which has only palliative benefits. Animal models have played a key role in studies of DMD pathogenesis and treatment development. The golden retriever muscular dystrophy (GRMD) dog displays a phenotype aligning with the progressive course of DMD. Therefore, canine studies may translate better to humans. Recent studies suggested that nicotinamide adenine dinucleotide (NAD+) cellular content could be a critical determinant for striated muscle function. We showed here that NAD+ content was decreased in the striated muscles of GRMD, leading to an alteration of one of NAD+ co-substrate enzymes, PARP-1. Moreover, we showed that boosting NAD+ content using nicotinamide (NAM), a natural NAD+ precursor, modestly reduces aspects of striated muscle disease. Collectively, our results provide mechanistic insights into DMD.


Assuntos
Músculo Estriado , Distrofia Muscular de Duchenne , Masculino , Cães , Animais , Humanos , Distrofia Muscular de Duchenne/patologia , Distrofina/genética , NAD/metabolismo , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo , Músculo Estriado/patologia
2.
Am J Physiol Cell Physiol ; 324(6): C1223-C1235, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37125775

RESUMO

Dilated cardiomyopathy caused by mutations in LMNA, encoding A-type lamins (i.e., LMNA cardiomyopathy), is characterized by a left ventricle enlargement and ultimately results in poor cardiac contractility associated with conduction defects. Despite current strategies to aggressively manage the symptoms, the disorder remains a common cause of sudden death and heart failure with decreased ejection fraction. Patient care includes cardioverter defibrillator implantation but the last therapeutic option remains cardiac transplantation. A-type lamins are intermediate filaments and are the main components of the nuclear lamina, a meshwork underlying the inner nuclear membrane, which plays an essential role in both maintaining the nuclear structure and organizing the cytoskeletal structures within the cell. Cytoskeletal proteins function as scaffold to resist external mechanical stress. An increasing amount of evidence demonstrates that LMNA mutations can lead to disturbances in several structural and cytoskeletal components of the cell such as microtubules, actin cytoskeleton, and intermediate filaments. Collectively, this review focuses on the significance of these cytoskeletal modulators and emphasizes their potential therapeutic role in LMNA cardiomyopathy. Indeed, molecular tuning of cytoskeletal dynamics has been successfully used in preclinical models and provides adequate grounds for a therapeutic approach for patients with LMNA cardiomyopathy.


Assuntos
Cardiomiopatias , Lamina Tipo A , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/terapia , Cardiomiopatias/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Mutação/genética
3.
Biomaterials ; 293: 121935, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36584444

RESUMO

Quantification of skeletal muscle functional contraction is essential to assess the outcomes of therapeutic procedures for neuromuscular disorders. Muscle three-dimensional "Organ-on-chip" models usually require a substantial amount of biological material, which rarely can be obtained from patient biopsies. Here, we developed a miniaturized 3D myotube culture chip with contraction monitoring capacity at the single cell level. Optimized micropatterned substrate design enabled to obtain high culture yields in tightly controlled microenvironments, with myotubes derived from primary human myoblasts displaying spontaneous contractions. Analysis of nuclear morphology confirmed similar myonuclei structure between obtained myotubes and in vivo myofibers, as compared to 2D monolayers. LMNA-related Congenital Muscular Dystrophy (L-CMD) was modeled with successful development of diseased 3D myotubes displaying reduced contraction. The miniaturized myotube technology can thus be used to study contraction characteristics and evaluate how diseases affect muscle organization and force generation. Importantly, it requires significantly fewer starting materials than current systems, which should substantially improve drug screening capability.


Assuntos
Fibras Musculares Esqueléticas , Distrofias Musculares , Humanos , Diferenciação Celular , Contração Muscular , Bioengenharia , Músculo Esquelético
4.
Nat Commun ; 13(1): 7886, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550158

RESUMO

Mutations in the lamin A/C gene (LMNA) cause dilated cardiomyopathy associated with increased activity of ERK1/2 in the heart. We recently showed that ERK1/2 phosphorylates cofilin-1 on threonine 25 (phospho(T25)-cofilin-1) that in turn disassembles the actin cytoskeleton. Here, we show that in muscle cells carrying a cardiomyopathy-causing LMNA mutation, phospho(T25)-cofilin-1 binds to myocardin-related transcription factor A (MRTF-A) in the cytoplasm, thus preventing the stimulation of serum response factor (SRF) in the nucleus. Inhibiting the MRTF-A/SRF axis leads to decreased α-tubulin acetylation by reducing the expression of ATAT1 gene encoding α-tubulin acetyltransferase 1. Hence, tubulin acetylation is decreased in cardiomyocytes derived from male patients with LMNA mutations and in heart and isolated cardiomyocytes from Lmnap.H222P/H222P male mice. In Atat1 knockout mice, deficient for acetylated α-tubulin, we observe left ventricular dilation and mislocalization of Connexin 43 (Cx43) in heart. Increasing α-tubulin acetylation levels in Lmnap.H222P/H222P mice with tubastatin A treatment restores the proper localization of Cx43 and improves cardiac function. In summary, we show for the first time an actin-microtubule cytoskeletal interplay mediated by cofilin-1 and MRTF-A/SRF, promoting the dilated cardiomyopathy caused by LMNA mutations. Our findings suggest that modulating α-tubulin acetylation levels is a feasible strategy for improving cardiac function.


Assuntos
Cardiomiopatia Dilatada , Masculino , Camundongos , Animais , Cardiomiopatia Dilatada/metabolismo , Actinas/metabolismo , Conexina 43/genética , Tubulina (Proteína)/genética , Fator de Resposta Sérica/genética , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Microtúbulos/metabolismo , Miócitos Cardíacos/metabolismo , Camundongos Knockout , Proteínas de Filamentos Intermediários/genética , Mutação , Fatores de Despolimerização de Actina/genética
5.
Front Cell Dev Biol ; 10: 1030950, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36274847

RESUMO

Cardiomyopathy is a myocardial disorder, in which the heart muscle is structurally and functionally abnormal, often leading to heart failure. Dilated cardiomyopathy is characterized by a compromised left ventricular function and contributes significantly to the heart failure epidemic, which represents a staggering clinical and public health problem worldwide. Gene mutations have been identified in 35% of patients with dilated cardiomyopathy. Pathogenic variants in LMNA, encoding nuclear A-type lamins, are one of the major causative causes of dilated cardiomyopathy (i.e. CardioLaminopathy). A-type lamins are type V intermediate filament proteins, which are the main components of the nuclear lamina. The nuclear lamina is connected to the cytoskeleton on one side, and to the chromatin on the other side. Among the models proposed to explain how CardioLaminopathy arises, the "chromatin model" posits an effect of mutated A-type lamins on the 3D genome organization and thus on the transcription activity of tissue-specific genes. Chromatin contacts with the nuclear lamina via specific genomic regions called lamina-associated domains lamina-associated domains. These LADs play a role in the chromatin organization and gene expression regulation. This review focuses on the identification of LADs and chromatin remodeling in cardiac muscle cells expressing mutated A-type lamins and discusses the methods and relevance of these findings in disease.

6.
Cell Rep ; 36(8): 109601, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433058

RESUMO

Cofilins are important for the regulation of the actin cytoskeleton, sarcomere organization, and force production. The role of cofilin-1, the non-muscle-specific isoform, in muscle function remains unclear. Mutations in LMNA encoding A-type lamins, intermediate filament proteins of the nuclear envelope, cause autosomal Emery-Dreifuss muscular dystrophy (EDMD). Here, we report increased cofilin-1 expression in LMNA mutant muscle cells caused by the inability of proteasome degradation, suggesting a protective role by ERK1/2. It is known that phosphorylated ERK1/2 directly binds to and catalyzes phosphorylation of the actin-depolymerizing factor cofilin-1 on Thr25. In vivo ectopic expression of cofilin-1, as well as its phosphorylated form on Thr25, impairs sarcomere structure and force generation. These findings present a mechanism that provides insight into the molecular pathogenesis of muscular dystrophies caused by LMNA mutations.


Assuntos
Citoesqueleto de Actina/metabolismo , Cofilina 1/metabolismo , Destrina/metabolismo , Lamina Tipo A/metabolismo , Laminopatias/metabolismo , Músculo Estriado/metabolismo , Sarcômeros/metabolismo , Adolescente , Adulto , Animais , Linhagem Celular , Criança , Humanos , Lamina Tipo A/genética , Laminopatias/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Estriado/patologia , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Mutação , Fosforilação , Transdução de Sinais , Adulto Jovem
7.
JCI Insight ; 6(7)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33661767

RESUMO

Here, we report on the identification of Itga7-expressing muscle-resident glial cells activated by loss of neuromuscular junction (NMJ) integrity. Gene expression analysis at the bulk and single-cell level revealed that these cells are distinct from Itga7-expressing muscle satellite cells. We show that a selective activation and expansion of Itga7+ glial cells occur in response to muscle nerve lesion. Upon activation, muscle glial-derived progenies expressed neurotrophic genes, including nerve growth factor receptor, which enables their isolation by FACS. We show that activated muscle glial cells also expressed genes potentially implicated in extracellular matrix remodeling at NMJs. We found that tenascin C, which was highly expressed by muscle glial cells, activated upon nerve injury and preferentially localized to NMJ. Interestingly, we observed that the activation of muscle glial cells by acute nerve injury was reversible upon NMJ repair. By contrast, in a mouse model of ALS, in which NMJ degeneration is progressive, muscle glial cells steadily increased over the course of the disease. However, they exhibited an impaired neurotrophic activity, suggesting that pathogenic activation of glial cells may be implicated in ALS progression.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Músculo Esquelético/citologia , Neuroglia/fisiologia , Traumatismos da Medula Espinal/patologia , Animais , Antígenos CD/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Cadeias alfa de Integrinas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Neuroglia/citologia , Junção Neuromuscular/citologia , Receptor de Fator de Crescimento Neural/genética , Receptores Colinérgicos/metabolismo , Nervo Isquiático/lesões , Análise de Célula Única , Superóxido Dismutase-1/genética
8.
Hum Mol Genet ; 29(24): 3919-3934, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33388782

RESUMO

Mutations in the lamin A/C gene (LMNA), which encodes A-type lamins, cause several diseases called laminopathies, the most common of which is dilated cardiomyopathy with muscular dystrophy. The role of Ca2+ regulation in these diseases remain poorly understood. We now show biochemical remodeling of the ryanodine receptor (RyR)/intracellular Ca2+ release channel in heart samples from human subjects with LMNA mutations, including protein kinase A-catalyzed phosphorylation, oxidation and depletion of the stabilizing subunit calstabin. In the LmnaH222P/H222P murine model of Emery-Dreifuss muscular dystrophy caused by LMNA mutation, we demonstrate an age-dependent biochemical remodeling of RyR2 in the heart and RyR1 in skeletal muscle. This RyR remodeling is associated with heart and skeletal muscle dysfunction. Defective heart and muscle function are ameliorated by treatment with a novel Rycal small molecule drug (S107) that fixes 'leaky' RyRs. SMAD3 phosphorylation is increased in hearts and diaphragms of LmnaH222P/H222P mice, which enhances NADPH oxidase binding to RyR channels, contributing to their oxidation. There is also increased generalized protein oxidation, increased calcium/calmodulin-dependent protein kinase II-catalyzed phosphorylation of RyRs and increased protein kinase A activity in these tissues. Our data show that RyR remodeling plays a role in cardiomyopathy and skeletal muscle dysfunction caused by LMNA mutation and identify these Ca2+ channels as a potential therapeutic target.


Assuntos
Cardiomiopatias/patologia , Modelos Animais de Doenças , Coração/fisiopatologia , Lamina Tipo A/genética , Distrofias Musculares/patologia , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Sinalização do Cálcio , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Feminino , Homeostase , Humanos , Masculino , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofias Musculares/etiologia , Distrofias Musculares/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
9.
Methods ; 190: 3-12, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32278808

RESUMO

What if the next generation of successful treatments was hidden in the current pharmacopoeia? Identifying new indications for existing drugs, also called the drug repurposing or drug rediscovery process, is a highly efficient and low-cost strategy. First reported almost a century ago, drug repurposing has emerged as a valuable therapeutic option for diseases that do not have specific treatments and rare diseases, in particular. This review focuses on Hutchinson-Gilford progeria syndrome (HGPS), a rare genetic disorder that induces accelerated and precocious aging, for which drug repurposing has led to the discovery of several potential treatments over the past decade.


Assuntos
Progéria , Humanos , Lamina Tipo A/genética , Preparações Farmacêuticas , Progéria/tratamento farmacológico , Progéria/genética
10.
Cells ; 9(10)2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036437

RESUMO

Laminopathies are a heterogeneous group of rare diseases caused by genetic mutations in the LMNA gene, encoding A-type lamins. A-type lamins are nuclear envelope proteins which associate with B-type lamins to form the nuclear lamina, a meshwork underlying the inner nuclear envelope of differentiated cells. The laminopathies include lipodystrophies, progeroid phenotypes and striated muscle diseases. Research on striated muscle laminopathies in the recent years has provided novel perspectives on the role of the nuclear lamina and has shed light on the pathological consequences of altered nuclear lamina. The role of altered nicotinamide adenine dinucleotide (NAD+) in the physiopathology of striated muscle laminopathies has been recently highlighted. Here, we have summarized these findings and reviewed the current knowledge about NAD+ alteration in striated muscle laminopathies, providing potential therapeutic approaches.


Assuntos
Laminopatias/metabolismo , Músculo Estriado/metabolismo , NAD/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Laminopatias/genética , Laminopatias/fisiopatologia , Músculo Esquelético/metabolismo , Doenças Musculares/patologia , Distrofia Muscular de Emery-Dreifuss/patologia , NAD/fisiologia , Lâmina Nuclear/metabolismo , Lâmina Nuclear/fisiologia
12.
Nat Commun ; 11(1): 4589, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917887

RESUMO

Mandibuloacral dysplasia syndromes are mainly due to recessive LMNA or ZMPSTE24 mutations, with cardinal nuclear morphological abnormalities and dysfunction. We report five homozygous null mutations in MTX2, encoding Metaxin-2 (MTX2), an outer mitochondrial membrane protein, in patients presenting with a severe laminopathy-like mandibuloacral dysplasia characterized by growth retardation, bone resorption, arterial calcification, renal glomerulosclerosis and severe hypertension. Loss of MTX2 in patients' primary fibroblasts leads to loss of Metaxin-1 (MTX1) and mitochondrial dysfunction, including network fragmentation and oxidative phosphorylation impairment. Furthermore, patients' fibroblasts are resistant to induced apoptosis, leading to increased cell senescence and mitophagy and reduced proliferation. Interestingly, secondary nuclear morphological defects are observed in both MTX2-mutant fibroblasts and mtx-2-depleted C. elegans. We thus report the identification of a severe premature aging syndrome revealing an unsuspected link between mitochondrial composition and function and nuclear morphology, establishing a pathophysiological link with premature aging laminopathies and likely explaining common clinical features.


Assuntos
Acro-Osteólise/metabolismo , Predisposição Genética para Doença/genética , Lipodistrofia/metabolismo , Mandíbula/anormalidades , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Acro-Osteólise/diagnóstico por imagem , Acro-Osteólise/genética , Acro-Osteólise/patologia , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Animais , Apoptose , Caenorhabditis elegans , Proliferação de Células , Criança , Regulação para Baixo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Genótipo , Homozigoto , Humanos , Lipodistrofia/diagnóstico por imagem , Lipodistrofia/genética , Lipodistrofia/patologia , Masculino , Mandíbula/diagnóstico por imagem , Proteínas de Membrana/genética , Metaloendopeptidases , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais/genética , Mutação , Fenótipo , Pele , Sequenciamento Completo do Genoma
13.
J Pers Med ; 10(2)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549253

RESUMO

Recent progress in Omics technologies has started to empower personalized healthcare development at a thorough biomolecular level. Omics have subsidized medical breakthroughs that have started to enter clinical proceedings. The use of this scientific know-how has surfaced as a way to provide a more far-reaching view of the biological mechanisms behind diseases. This review will focus on the discoveries made using Omics and the utility of these approaches for Emery-Dreifuss muscular dystrophy.

14.
Biochem Biophys Rep ; 22: 100767, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32490213

RESUMO

Cardiomyopathy caused by A-type lamins gene (LMNA) mutations (LMNA cardiomyopathy) is associated with dysfunction of the heart, often leading to heart failure. LMNA cardiomyopathy is highly penetrant with bad prognosis with no specific therapy available. Searching for alternative ways to halt the progression of LMNA cardiomyopathy, we studied the role of calcium homeostasis in the evolution of this disease. We showed that sarcolipin, an inhibitor of the sarco/endoplasmic reticulum (SR) Ca2+ ATPase (SERCA) was abnormally elevated in the ventricular cardiomyocytes of mutated mice compared with wild type mice, leading to an alteration of calcium handling. This occurs early in the progression of the disease, when the left ventricular function was not altered. We further demonstrated that down regulation of sarcolipin using adeno-associated virus (AAV) 9-mediated RNA interference delays cardiac dysfunction in mouse model of LMNA cardiomyopathy. These results showed a novel role for sarcolipin on calcium homeostasis in heart and open perspectives for future therapeutic interventions to LMNA cardiomyopathy.

15.
Biochem Biophys Res Commun ; 529(3): 861-867, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32540097

RESUMO

The cytoskeleton is a complex network interlinking filaments that extend throughout the cytoplasm from the nucleus to the plasma membrane. Three major types of filaments are found in the cytoskeleton: actin filaments, microtubules, and intermediate filaments. They play a key role in the ability of cells to both resist mechanical stress and generate force. However, the precise involvement of intermediate filament proteins in these processes remains unclear. Here, we focused on nuclear A-type lamins, which are connected to the cytoskeleton via the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. Using micro-constriction rheology, we investigated the impact of A-type lamins (p.H222P) mutation on the mechanical properties of muscle cells. We demonstrate that the expression of point mutation of lamin A in muscle cells increases cellular stiffness compared with cells expressing wild type lamin A and that the chemical agent selumetinib, an inhibitor of the ERK1/2 signaling, reversed the mechanical alterations in mutated cells. These results highlight the interplay between A-type lamins and mechano-signaling, which are supported by cell biology measurements.


Assuntos
Lamina Tipo A/genética , Fibras Musculares Esqueléticas/citologia , Mutação Puntual , Animais , Fenômenos Biomecânicos , Linhagem Celular , Lamina Tipo A/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Fibras Musculares Esqueléticas/metabolismo
16.
Mol Ther Methods Clin Dev ; 17: 695-708, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32346547

RESUMO

Duchenne muscular dystrophy (DMD) is a devastating neuromuscular disease caused by an absence of the dystrophin protein, which is essential for muscle fiber integrity. Among the developed therapeutic strategies for DMD, the exon-skipping approach corrects the frameshift and partially restores dystrophin expression. It could be achieved through the use of antisense sequences, such as peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) or the small nuclear RNA-U7 carried by an adeno-associated virus (AAV) vector. AAV-based gene therapy approaches have potential for use in DMD treatment but are subject to a major limitation: loss of the AAV genome, necessitating readministration of the vector, which is not currently possible, due to the immunogenicity of the capsid. The PPMO approach requires repeated administrations and results in only weak cardiac dystrophin expression. Here, we evaluated a combination of PPMO- and AAV-based therapy in a mouse model of severe DMD. Striking benefits of this combined therapy were observed in striated muscles, with marked improvements in heart and diaphragm structure and function, with unrivalled extent of survival, opening novel therapeutic perspectives for patients.

17.
FASEB J ; 34(2): 2987-3005, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908029

RESUMO

The expression of α-cardiac actin, a major constituent of the cytoskeleton of cardiomyocytes, is dramatically decreased in a mouse model of dilated cardiomyopathy triggered by inducible cardiac-specific serum response factor (Srf) gene disruption that could mimic some forms of human dilated cardiomyopathy. To investigate the consequences of the maintenance of α-cardiac actin expression in this model, we developed a new transgenic mouse based on Cre/LoxP strategy, allowing together the induction of SRF loss and a compensatory expression of α-cardiac actin. Here, we report that maintenance of α-cardiac actin within cardiomyocytes temporally preserved cytoarchitecture from adverse cardiac remodeling through a positive impact on both structural and transcriptional levels. These protective effects were accompanied in vivo by the decrease of ROS generation and protein carbonylation and the downregulation of NADPH oxidases NOX2 and NOX4. We also show that ectopic expression of α-cardiac actin protects HEK293 cells against oxidative stress induced by H2 O2 . Oxidative stress plays an important role in the development of cardiac remodeling and contributes also to the pathogenesis of heart failure. Taken together, these findings indicate that α-cardiac actin could be involved in the regulation of oxidative stress that is a leading cause of adverse remodeling during dilated cardiomyopathy development.


Assuntos
Actinas/metabolismo , Cardiomiopatia Dilatada/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Actinas/genética , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/prevenção & controle , Modelos Animais de Doenças , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/patologia , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo
18.
Circ Arrhythm Electrophysiol ; 12(11): e007573, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31665913

RESUMO

BACKGROUND: Obesity and diets high in saturated fat increase the risk of arrhythmias and sudden cardiac death. However, the molecular mechanisms are not well understood. We hypothesized that an increase in dietary saturated fat could lead to abnormalities of calcium homeostasis and heart rhythm by a NOX2 (NADPH oxidase 2)-dependent mechanism. METHODS: We investigated this hypothesis by feeding mice high-fat diets. In vivo heart rhythm telemetry, optical mapping, and isolated cardiac myocyte imaging were used to quantify arrhythmias, repolarization, calcium transients, and intracellular calcium sparks. RESULTS: We found that saturated fat activates NOX (NADPH oxidase), whereas polyunsaturated fat does not. The high saturated fat diet increased repolarization heterogeneity and ventricular tachycardia inducibility in perfused hearts. Pharmacological inhibition or genetic deletion of NOX2 prevented arrhythmogenic abnormalities in vivo during high statured fat diet and resulted in less inducible ventricular tachycardia. High saturated fat diet activates CaMK (Ca2+/calmodulin-dependent protein kinase) in the heart, which contributes to abnormal calcium handling, promoting arrhythmia. CONCLUSIONS: We conclude that NOX2 deletion or pharmacological inhibition prevents the arrhythmogenic effects of a high saturated fat diet, in part mediated by activation of CaMK. This work reveals a molecular mechanism linking cardiac metabolism to arrhythmia and suggests that NOX2 inhibitors could be a novel therapy for heart rhythm abnormalities caused by cardiac lipid overload.


Assuntos
Arritmias Cardíacas/etiologia , Cálcio/metabolismo , Dieta Hiperlipídica/efeitos adversos , Miócitos Cardíacos/metabolismo , NADPH Oxidase 2/metabolismo , Estresse Oxidativo , Animais , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/metabolismo , Sinalização do Cálcio , Modelos Animais de Doenças , Ecocardiografia , Eletrocardiografia , Camundongos , Miócitos Cardíacos/patologia , Oxirredução
19.
Curr Opin Neurol ; 32(5): 728-734, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31460960

RESUMO

PURPOSE OF REVIEW: Emery-Dreifuss muscular dystrophy (EDMD) is caused by mutations in EMD encoding emerin and LMNA encoding A-type lamins, proteins of the nuclear envelope. In the past decade, there has been an extraordinary burst of research on the nuclear envelope. Discoveries resulting from this basic research have implications for better understanding the pathogenesis and developing treatments for EDMD. RECENT FINDINGS: Recent clinical research has confirmed that EDMD is one of several overlapping skeletal muscle phenotypes that can result from mutations in EMD and LMNA with dilated cardiomyopathy as a common feature. Basic research on the nuclear envelope has provided new insights into how A-type lamins and emerin function in force transmission throughout the cell, which may be particularly important in striated muscle. Much of the recent research has focused on the heart and LMNA mutations. Prevalence and outcome studies have confirmed the relative severity of cardiac disease. Robust mouse models of EDMD caused by LMNA mutations has allowed for further insight into pathogenic mechanisms and potentially beneficial therapeutic approaches. SUMMARY: Recent clinical and basic research on EDMD is gradually being translated to clinical practice and possibly novel therapies.


Assuntos
Lamina Tipo A/metabolismo , Proteínas de Membrana/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Mutação , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Animais , Humanos , Lamina Tipo A/genética , Proteínas de Membrana/genética , Camundongos , Músculo Esquelético/metabolismo , Distrofia Muscular de Emery-Dreifuss/metabolismo , Proteínas Nucleares/genética , Fenótipo
20.
Biochem Biophys Rep ; 19: 100664, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31341969

RESUMO

A-type lamins gene (LMNA) mutations cause an autosomal dominant inherited form of Emery-Dreifuss muscular dystrophy (EDMD). EDMD is characterized by slowly progressive muscle weakness and wasting and dilated cardiomyopathy, often leading to heart failure-related disability. EDMD is highly penetrant with poor prognosis and there is currently no specific therapy available. Clinical variability ranges from early onset with severe presentation in childhood to late onset with slow progression in adulthood. Genetic background is a well-known factor that significantly affects phenotype in several mouse models of human diseases. This phenotypic variability is attributed, at least in part, to genetic modifiers that regulate the disease process. To characterize the phenotype of A-type lamins mutation on different genetic background, we created and phenotyped C57BL/6JRj-Lmna H222P/H222P mice (C57 Lmna p.H222P) and compared them with the 129S2/SvPasCrl-Lmna H222P/H222P mice (129 Lmna p.H222P). These mouse strains were compared with their respective control strains at multiple time points between 3 and 10 months of age. Both contractile and electrical cardiac muscle functions, as well as survival were characterized. We found that 129 Lmna p.H222P mice showed significantly reduced body weight and reduced cardiac function earlier than in the C57 Lmna p.H222P mice. We also revealed that only 129 Lmna p.H222P mice developed heart arrhythmias. The 129 Lmna p.H222P model with an earlier onset and more pronounced cardiac phenotype may be more useful for evaluating therapies that target cardiac muscle function, and heart arrhythmias.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA