Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Helicobacter ; 28(4): e13000, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37340512

RESUMO

BACKGROUND: Helicobacter pylori strains show a high level of genotypic diversity and express several genes that contribute to their pathogenicity and resistance. In Mozambique, there is lack of information regarding its resistance pattern to antibiotics. In this study, we aimed to investigate the prevalence of H. pylori and its genotypic resistance to clarithromycin, metronidazole, and fluoroquinolones in Mozambican dyspeptic patients. Since appropriate eradication should be based on the local resistance rate, our data will guide clinicians in choosing the best drugs for the effective treatment of H. pylori-infected patients. METHODS: This is a cross-sectional descriptive study conducted between June 2017 and June 2020, in which 171 dyspeptic patients were recruited, and through upper gastrointestinal endoscopy, gastric biopsies were collected from those patients. Polymerase chain reaction was performed for the detection of H. pylori and its resistance mechanisms to clarithromycin (23S rRNA), metronidazole (rdxA), and fluoroquinolones (gyrA); mutations conferring resistance to these antibiotics were investigated by sequencing 23S rRNA, rdxA, and gyrA genes. RESULTS: Of the 171 samples tested, H. pylori was detected in 56.1% (96/171). The clarithromycin resistance rate was 10.4% (the responsible mutations were A2142G and A2143G), the metronidazole resistance rate was 55.2% (4 types of mutations responsible for metronidazole resistance were identified which include, D59N, R90K, H97T, and A118T. However, in many cases, they appeared in combination, with D59N + R90K + A118T being the most frequent combination), and the fluoroquinolones resistance rate was 20% (the responsible mutations were N87I and D91G). CONCLUSION: H. pylori infection remains common in dyspeptic Mozambican patients. High resistance to metronidazole and fluoroquinolones requires continuous monitoring of antibiotic resistance and adaptation of therapy to eradicate this infection.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Claritromicina/farmacologia , Claritromicina/uso terapêutico , Metronidazol/farmacologia , Metronidazol/uso terapêutico , Infecções por Helicobacter/epidemiologia , Moçambique , RNA Ribossômico 23S/genética , Estudos Transversais , Farmacorresistência Bacteriana/genética , Fluoroquinolonas/farmacologia , Testes de Sensibilidade Microbiana
2.
Foodborne Pathog Dis ; 18(6): 426-435, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33978455

RESUMO

This study reports a genomic analysis of Escherichia coli isolates recovered from 25 bovine fecal composite samples collected from four different production units in Maputo city and around Maputo Province, Mozambique. The genomes were analyzed to determine the presence of antibiotic resistance genes (ARGs), genetic relatedness, and virulence factors known to cause diseases in humans. Whole-genome sequencing was conducted on 28 isolates using an Illumina NextSeq 500 sequencing platform. The genomes were analyzed using BLASTN for the presence of resistance genes and virulence factors, as well as to determine their phylogenetic groups, sequence types (ST), and ST complexes (ST Cplxs). The majority of the isolates (85%) were identified as members of phylogenetic groups B1, with fewer isolates identified as members of group A, and a single isolate identified as group "E/Clade I." The ST analysis demonstrated a higher level of diversity than the phylogenetic group analysis. Sixteen different STs, five ST Cplxs, and seven singleton complexes were identified. A strain identified as a novel ST (ST9215) showed a high level of similarity with an isolate recovered from a wild animal in the Gambia. Seven different ARGs were identified, with tet(B) being the most frequently detected, followed by aph(3″)-Ib, aph(6)-Id, sul2, blaTEM-1B, and dfrA1. Three isolates encoded ß-lactam-conferring point mutations in the ampC promoter (-42C>T). In total, 51 different virulence factors were identified among the genomes. This study demonstrates that E. coli from bovine sources in Mozambique encoded multiple antibiotic resistance elements, plasmids, and virulence factors. To the best of our knowledge, this is the first genomic description of antibiotic-resistant E. coli isolated from bovine sources in Mozambique.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Microbiologia de Alimentos/estatística & dados numéricos , Genoma Bacteriano/genética , Fatores de Virulência/genética , Animais , Antibacterianos/farmacologia , Bovinos , Escherichia coli/isolamento & purificação , Fezes/microbiologia , Testes de Sensibilidade Microbiana , Moçambique , Filogenia , Plasmídeos/genética , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA