Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Spectrosc ; 73(11): 1334-1339, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31219324

RESUMO

This paper reports our efforts to determine whether rotational spectroscopy is a useful tool for petroleum analysis. These efforts include the use of a BrightSpec molecular rotational resonance (MRR) spectrometer, which operates in the 260-290 GHz frequency range, to record rotational spectra of small polar contaminants in commercial gasoline. The observed rotational spectra showed rich, but assignable, patterns due to the sensitivity of the MRR to only small polar compounds. Any interference from a complex hydrocarbon matrix, which in conventional chromatographic methods obscures signals from small polar contaminants, is nearly eliminated. In addition to the evident rotational spectrum of ethanol, the spectra of toluene, ethyl cyanide, and acetaldehyde have also been detected. A quantitative method for ethanol has been developed and demonstrated in this paper, whereas the specific analyses of the other polar impurities will be reported in the future. The validity of MRR to be used as an analytical instrument has been examined by constructing a standard linear curve using dilutions of ethanol in water. The linearity and percentage recovery parameters are satisfactory.

2.
Angew Chem Int Ed Engl ; 54(3): 979-82, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25413278

RESUMO

A structural study of microsolvated clusters of ß-propiolactone (BPL) formed in a pulsed molecular jet expansion is presented. The rotational spectra of BPL-(H2O)n (n=1-5) adducts have been analyzed by broadband microwave spectroscopy. Unambiguous identification of the structures has been achieved using isotopic substitution and experimental measurements of the cluster dipole moment. The observed structures are discussed in terms of the different intermolecular interactions between water molecules and between water and BPL, which include n-π* interactions involving the lone pairs of electrons on water oxygen atoms and the antibonding orbital of the BPL carbonyl group. The changes induced in the structures of the water hydrogen-bonding network by complexation to BPL indicate that water clusters adopt specific configurations to maximize their links to solute molecules.


Assuntos
Propiolactona/química , Soluções/química , Água/química , Ligação de Hidrogênio , Isomerismo , Marcação por Isótopo , Espectrofotometria Infravermelho
3.
J Phys Chem A ; 113(46): 12911-8, 2009 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-19824681

RESUMO

The microwave spectrum of the sugar alcohol 1,3-propanediol (CH(2)OHCH(2)CH(2)OH) has been measured over the frequency range 6.7 to 25.4 GHz using both cavity and broadband microwave spectrometers. The tunneling splittings from two structurally chiral conformer (enantiomeric) pairs of 1,3-propanediol have been fully resolved and assigned. The tunneling frequency of the lowest-energy inverting pair is 5.4210(28) MHz and found to increase by more than 7-fold to 39.2265(24) MHz for the higher-energy form. From the observed selection rules, three possible inversion pathways along the two OH concerted torsional modes have been identified and theoretically investigated. Quantum chemical calculations (MP2/aug-cc-pVTZ level) have been performed on the eight lowest-energy forms and three transition-state structures. Two of these pathways cross through C(S) transition states associated with each of the enantiomeric pairs and a third common pathway of lowest energy has a transition state of C(1) symmetry. For only the C(1) pathway is good agreement found between predictions from a 1D WKB analysis and the observed tunneling frequencies and 7-fold ratio. The conformer interconversion barrier is calculated to be about 3-fold smaller than that for the inversion suggesting the wave functions of the four inversion levels are partially delocalized over the four surface minima. Accurate dipole moment components have also been obtained from Stark effect measurements for the lowest-energy form.


Assuntos
Micro-Ondas , Propilenoglicóis/química , Simulação por Computador , Modelos Químicos , Conformação Molecular , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA