Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Brain ; 137(Pt 12): 3200-12, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25281868

RESUMO

Progressive external ophthalmoplegia is a common clinical feature in mitochondrial disease caused by nuclear DNA defects and single, large-scale mitochondrial DNA deletions and is less frequently associated with point mutations of mitochondrial DNA. Peripheral neuropathy is also a frequent manifestation of mitochondrial disease, although its prevalence and characteristics varies considerably among the different syndromes and genetic aetiologies. Based on clinical observations, we systematically investigated whether the presence of peripheral neuropathy could predict the underlying genetic defect in patients with progressive external ophthalmoplegia. We analysed detailed demographic, clinical and neurophysiological data from 116 patients with genetically-defined mitochondrial disease and progressive external ophthalmoplegia. Seventy-eight patients (67%) had a single mitochondrial DNA deletion, 12 (10%) had a point mutation of mitochondrial DNA and 26 (22%) had mutations in either POLG, C10orf2 or RRM2B, or had multiple mitochondrial DNA deletions in muscle without an identified nuclear gene defect. Seventy-seven patients had neurophysiological studies; of these, 16 patients (21%) had a large-fibre peripheral neuropathy. The prevalence of peripheral neuropathy was significantly lower in patients with a single mitochondrial DNA deletion (2%) as compared to those with a point mutation of mitochondrial DNA or with a nuclear DNA defect (44% and 52%, respectively; P<0.001). Univariate analyses revealed significant differences in the distribution of other clinical features between genotypes, including age at disease onset, gender, family history, progressive external ophthalmoplegia at clinical presentation, hearing loss, pigmentary retinopathy and extrapyramidal features. However, binomial logistic regression analysis identified peripheral neuropathy as the only independent predictor associated with a nuclear DNA defect (P=0.002; odds ratio 8.43, 95% confidence interval 2.24-31.76). Multinomial logistic regression analysis identified peripheral neuropathy, family history and hearing loss as significant predictors of the genotype, and the same three variables showed the highest performance in genotype classification in a decision tree analysis. Of these variables, peripheral neuropathy had the highest specificity (91%), negative predictive value (83%) and positive likelihood ratio (5.87) for the diagnosis of a nuclear DNA defect. These results indicate that peripheral neuropathy is a rare finding in patients with single mitochondrial DNA deletions but that it is highly predictive of an underlying nuclear DNA defect. This observation may facilitate the development of diagnostic algorithms. We suggest that nuclear gene testing may enable a more rapid diagnosis and avoid muscle biopsy in patients with progressive external ophthalmoplegia and peripheral neuropathy.


Assuntos
Núcleo Celular/genética , DNA Mitocondrial/genética , Predisposição Genética para Doença , Mitocôndrias/genética , Oftalmoplegia Externa Progressiva Crônica/genética , Doenças do Sistema Nervoso Periférico/genética , Adolescente , Adulto , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Adulto Jovem
2.
J Neurol Neurosurg Psychiatry ; 84(8): 936-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23355809

RESUMO

BACKGROUND: Population-based studies suggest the m.3243A>G mutation in MTTL1 is the most common disease-causing mtDNA mutation, with a carrier rate of 1 in 400 people. The m.3243A>G mutation is associated with several clinical syndromes including mitochondrial encephalopathy lactic acidosis and stroke-like episodes (MELAS), maternally inherited deafness and diabetes (MIDD) and progressive external ophthalmoplegia (PEO). Many patients affected by this mutation exhibit a clinical phenotype that does not fall within accepted criteria for the currently recognised classical mitochondrial syndromes. METHODS: We have defined the phenotypic spectrum associated with the m.3243A>G mtDNA mutation in 129 patients, from 83 unrelated families, recruited to the Mitochondrial Disease Patient Cohort Study UK. RESULTS: 10% of patients exhibited a classical MELAS phenotype, 30% had MIDD, 6% MELAS/MIDD, 2% MELAS/chronic PEO (CPEO) and 5% MIDD/CPEO overlap syndromes. 6% had PEO and other features of mitochondrial disease not consistent with another recognised syndrome. Isolated sensorineural hearing loss occurred in 3%. 28% of patients demonstrated a panoply of clinical features, which were not consistent with any of the classical syndromes associated with the m.3243A>G mutation. 9% of individuals harbouring the mutation were clinically asymptomatic. CONCLUSION: Following this study we propose guidelines for screening and for the management of confirmed cases.


Assuntos
Doenças Mitocondriais/genética , Mutação/genética , Adolescente , Adulto , Idoso , Cardiomiopatias/epidemiologia , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Criança , Pré-Escolar , Estudos de Coortes , Complicações do Diabetes/epidemiologia , Complicações do Diabetes/genética , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/genética , Feminino , Perda Auditiva Neurossensorial/epidemiologia , Perda Auditiva Neurossensorial/etiologia , Humanos , Lactente , Síndrome MELAS/epidemiologia , Síndrome MELAS/genética , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/terapia , Encefalomiopatias Mitocondriais/epidemiologia , Encefalomiopatias Mitocondriais/etiologia , Encefalomiopatias Mitocondriais/genética , Reino Unido/epidemiologia , Adulto Jovem
3.
Neurology ; 79(11): 1145-54, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22933740

RESUMO

OBJECTIVE: Charcot-Marie-Tooth (CMT) disease is the most common inherited neuromuscular disorder, affecting 1 in 2,500 individuals. Mitochondrial DNA (mtDNA) mutations are not generally considered within the differential diagnosis of patients with uncomplicated inherited neuropathy, despite the essential requirement of ATP for axonal function. We identified the mtDNA mutation m.9185T>C in MT-ATP6, encoding the ATP6 subunit of the mitochondrial ATP synthase (OXPHOS complex V), at homoplasmic levels in a family with mitochondrial disease in whom a severe motor axonal neuropathy was a striking feature. This led us to hypothesize that mutations in the 2 mtDNA complex V subunit encoding genes, MT-ATP6 and MT-ATP8, might be an unrecognized cause of isolated axonal CMT and distal hereditary motor neuropathy (dHMN). METHODS: A total of 442 probands with CMT type 2 (CMT2) (270) and dHMN (172) were screened for MT-ATP6/8 mutations after exclusion of mutations in known CMT2/dHMN genes. Mutation load was quantified using restriction endonuclease analysis. Blue-native gel electrophoresis (BN-PAGE) was performed to analyze the effects of m.9185T>C on complex V structure and function. RESULTS: Three further probands with CMT2 harbored the m.9185T>C mutation. Some relatives had been classified as having dHMN. Patients could be separated into 4 groups according to their mutant m.9185T>C levels. BN-PAGE demonstrated both impaired assembly and reduced activity of the complex V holoenzyme. CONCLUSIONS: We have shown that m.9185T>C in MT-ATP6 causes CMT2 in 1.1% of genetically undefined cases. This has important implications for diagnosis and genetic counseling. Recognition that mutations in MT-ATP6 cause CMT2 enhances current understanding of the pathogenic basis of axonal neuropathy.


Assuntos
Doença de Charcot-Marie-Tooth/genética , DNA Mitocondrial , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação , Adolescente , Adulto , Idoso de 80 Anos ou mais , Doença de Charcot-Marie-Tooth/fisiopatologia , Criança , Feminino , Genótipo , Neuropatia Hereditária Motora e Sensorial/genética , Neuropatia Hereditária Motora e Sensorial/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem
4.
J Med Genet ; 48(9): 610-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21378381

RESUMO

BACKGROUND: Mutations in RRM2B encoding ribonucleotide reductase (RNR) p53R2 subunit usually cause paediatric-onset mitochondrial disease associated with mitochondrial DNA (mtDNA) depletion. The importance of RNR dysfunction in adult mitochondrial disease is unclear. OBJECTIVE: To report the RRM2B mutation frequency in adults with multiple mtDNA deletions and examine RNR assembly in a patient with Kearns-Sayre syndrome (KSS) caused by two novel RRM2B mutations. METHODS: 50 adult patients with multiple mtDNA deletions in skeletal muscle were studied. DNA sequencing of RRM2B was performed in patients without mutations in mtDNA maintenance genes POLG and C10orf2. RNR protein was studied using western blot and Blue-native polyacrylamide gel electrophoresis (BN-PAGE). RESULTS: Four per cent (two unrelated cases) of this adult cohort harboured RRM2B mutations. Patient 1 had KSS and two novel missense mutations: c.122G→A; p.Arg41Gln and c.391G→A; p.Glu131Lys. BN-PAGE demonstrated reduced heterotetrameric R1/p53R2 RNR levels compared with controls, despite normal steady-state p53R2 levels on western blot, suggesting failed assembly of functional RNR as a potential disease mechanism. Patient 2 had late-onset progressive external ophthalmoplegia and fatigue. A heterozygous deletion c.253_255delGAG; p.Glu85del was identified. Muscle histology in both cases showed significant numbers of necrotic muscle fibres, possibly indicating enhanced apoptotic cell death. CONCLUSION: These data indicate that 4% of adult mitochondrial disease with multiple deletions is caused by RNR dysfunction. KSS has not previously been linked to a nuclear gene defect. Evidence that disease pathogenesis may be caused by defective RNR assembly is given. RRM2B screening should be considered early in the differential diagnosis of adults with multiple mtDNA deletions.


Assuntos
Proteínas de Ciclo Celular/genética , Síndrome de Kearns-Sayre/genética , Ribonucleotídeo Redutases/genética , Sequência de Bases , Proteínas de Ciclo Celular/metabolismo , Estudos de Coortes , Análise Mutacional de DNA , Deleção de Genes , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Mutação , Ribonucleotídeo Redutases/metabolismo
5.
Mov Disord ; 23(5): 716-20, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18181206

RESUMO

Huntington's disease (HD) classically presents with movement disorder, cognitive dysfunction and behavioral problems but is phenotypically variable. One percent of patients with HD-like symptoms lack the causative mutation and are considered HD phenocopies. Genetic diseases known to cause HD phenocopies include HD-like syndromes HDL1, HDL2, and HDL4 (SCA17). HD has phenotypic overlap with dentatorubral-pallidoluysian atrophy, the spinocerebellar ataxias and neuroferritinopathy. Identifying the genetic basis of HD phenocopies is important for diagnosis and may inform the search for HD genetic modifiers. We sought to identify neurogenetic diagnoses in the largest reported cohort of HD phenocopy patients. Two hundred eighty-five patients with syndromes consistent with HD, who were HD expansion-negative, were screened for mutations in PRNP, JPH3, TBP, DRPLA, SCA1, SCA2, SCA3, FTL and FRDA. Genetic diagnoses were made in 8 subjects: we identified 5 cases of HDL4, 1 of HDL1 and 1 of HDL2. One patient had Friedreich's ataxia. There were no cases of DRPLA, SCA1, SCA2, SCA3, or neuroferritinopathy. HD phenocopies are clinically and genetically diverse and a definitive genetic diagnosis is currently possible in only a minority of cases. When undertaken, it should be clinically directed and patients and clinicians should be prepared for the low probability of reaching a genetic diagnosis in this group of patients.


Assuntos
Doença de Huntington/diagnóstico , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/genética , Adulto , Estudos de Coortes , Diagnóstico Diferencial , Feminino , Ataxia de Friedreich/diagnóstico , Ataxia de Friedreich/genética , Humanos , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Mutagênese Insercional , Fenótipo , Doenças Priônicas/diagnóstico , Doenças Priônicas/genética , Proteínas Priônicas , Príons/genética , Síndrome , Proteína de Ligação a TATA-Box/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA