Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(11): 18407-18419, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381552

RESUMO

We report high light extraction from the top emission OLED (TEOLED) device structure by improving mainly the waveguide mode loss in the atomic layer deposition processed thin film encapsulation (TFE) layer. A novel structure incorporating the light extraction concept using evanescent waves and the hermetic encapsulation of a TEOLED device is presented here. When the TEOLED device is fabricated using the TFE layer, a substantial amount of generated light is trapped inside the device due to the difference in refractive index (RI) between the capping layer (CPL) and the aluminum oxide (Al2O3) layer. By inserting a low RI layer at the interface between the CPL and Al2O3, the direction of the internal reflected light is changed by the evanescent waves. The high light extraction with the low RI layer is attributed to the presence of evanescent waves and an electric field in the low RI layer. The novel fabricated TFE structure, CPL/ low RI layer/ Al2O3/ polymer/ Al2O3, is reported here. The current efficiency of the fabricated blue TEOLED device using this low RI layer is improved by about 23% and the blue index value is enhanced by about 26%. This new approach for light extraction will be applicable to future encapsulation technology for flexible optoelectronic devices.

2.
ACS Appl Mater Interfaces ; 14(50): 55925-55932, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36484498

RESUMO

We report high-efficiency and long-lifetime inverted green cadmium-free (InP-based) quantum dot light-emitting diodes (QLEDs) using a stable ZnO/ZnS cascaded electron transport layer (ETL). We have successfully developed a strategy to spin-coat stable ZnS ETLs with a relatively higher conduction band minimum (CBM) and lower electron mobility than that of ZnO, which leads to balanced carrier injection and an improved device lifetime. Analysis shows that by using the ZnO/ZnS cascaded ETL, electron injection is reduced, resulting in an improved charge balance in the QD layer and suppressed exciton quenching, which preserves the emission properties of QDs. Optimized devices with ZnO/ZnS cascaded ETLs show a maximum external quantum efficiency of 10.8% and a maximum current efficiency of 37.5 cd/A; these efficiency values are an almost 2.2-fold improvement compared to those of reference devices without ZnS. The QLED devices also showed a remarkably long lifetime (LT70) of 265 h at an initial luminance of 1000 cd/m2. The predicted half-lifetime (LT50) at 100 cd/m2 is 60,255 h, which, to our knowledge, is currently the longest lifetime yet reported for InP-based green QLEDs.

3.
Nanoscale Adv ; 4(3): 904-910, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36131818

RESUMO

The efficiency and device lifetime of quantum dot light-emitting diode (QLED) devices suffer from the charge imbalance issue resulting from excess electron injection from the ZnO electron transport layer (ETL) to the quantum dot (QD) emissive layer (EML). Herein we report 1,3-bis(9-phenyl-1,10-phenanthrolin-2-yl)benzene (BPPB) small molecule ETL blended ZnO as an interlayer in inverted red indium phosphide (InP) based QLEDs to slow down the ZnO ETL mobility. The device with ZnO : BPPB (15 wt%) shows 16.7% external quantum efficiency and 595 h lifetime (T 50) at 1000 cd m-2. Insertion of a thin hybrid interlayer reduces the electron injection to match the charge balance in the QD layer and also suppresses the interfacial exciton quenching between the ZnO ETL and QD EML.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA