Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ther Deliv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497152

RESUMO

Aim: Amide-linked amylose-based prodrugs were developed for colon-targeted release of mefenamic acid. Materials & methods: Activation of prodrug was studied spectrophotometrically, enzyme-linked immunosorbent assay appraised cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) inhibition at different concentrations of the prodrug, the behavior of prodrug under physiological conditions was monitored by scanning electron microscopy. Results: Prodrug was poorly activated in the enzyme-free simulated gastric media and simulated intestinal media (SIM) but preincubation in pancreatin followed by treatment in aminopeptidase containing SIM led to a significant activation of prodrug. Conclusion: Amide-linked amylose-mefenamic acid conjugates showed a slow release in simulated gastric media and a controlled release in SIM with pancreatin playing an important role in drug release.

2.
Ther Deliv ; 14(3): 183-192, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37158260

RESUMO

Aim: To develop controlled-release tablets based on aminated starch. Materials & methods: Aminated starch was characterized with Fourier transform infrared and x-ray diffraction. Thermogravimetric analysis confirmed the preferential oxidation of crystalline region of starch. Results: The tablets achieved an initial fast release of fenamates, which slows down after 12 h. Drug release was not completed in the simulated intestinal media, which may be due to the stability of imine bond in aminated starch at weakly acidic pH. Drug release was completed in simulated acidic media due to the hydrolysis of imine functionality at strongly acidic pH. Conclusion: Aminated starch with an imine functionality may serve as intestine targeted, controlled drug-delivery system. Mucoadhesive potential of tablets further supports this observation.


Assuntos
Fenamatos , Amido , Amido/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Difração de Raios X , Comprimidos/química , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Anal Biochem ; 659: 114925, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36181866

RESUMO

Urease is an enzyme of historical importance in the field of biochemistry, generally microbial and plant urease is the primary sources of urease. The significant applications of urease enzyme are found to be foremost in food industry, medical equipment's and biosensors. In this work, urease has been extracted from Jack bean meal using ammonium sulphate and acetone precipitation. A significant amount of urease was precipitated and concentrated at 60% saturated solution of ammonium sulphate. The obtained precipitates were dissolved in 50 mM phosphate buffer (pH 8) after centrifugation, and subjected to sodium dodecyl-sulphate polyacrylamide gel electrophoresis (SDS-PAGE) to determine the molecular weight of urease. Results obtained from the SDS-PAGE were validated using Zymography. Anion exchange chromatography was used to separate the desired protein at different pH (7.0, 7.5 and 8.0). The eluted fractions were assessed for urease activity using phenol-nitroprusside dependent ammonia release assay. Under these assay conditions, one unit of urease activity was calibrated as the amount of enzyme liberating 1 µM of NH3 from urea per unit time. The eluted fraction and Zymography analysis show the purified urease observed at 90 kDa and activity of purified urease, respectively. The obtained results for specific activity (173.67Units mg) and % purification (99.71%) for urease has been compared with the available literature, which are found to be in close relation with existing results. The proposed method is a novel approach which has recorded highest % purification and specific activity. Furthermore, it can be suitable for extracting urease from jack bean source for various industrial applications.


Assuntos
Plantas , Urease , Urease/química , Sulfato de Amônio , Eletroforese em Gel de Poliacrilamida , Plantas/metabolismo , Ureia
4.
Int J Environ Health Res ; 29(1): 1-21, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30084259

RESUMO

Graphene alone, in modified form or its composites had find their explicit position in the field of adsorption technology and hence assist in detection and removal of heavy metals like Cd (permissible limit 0.1 mg/L), which can cause various physiological problems if entered in variety of biota. Attributed to their unique physiognomies graphene-based adsorbent had classed themselves superior as compared to other carbonaceous adsorbent like CNT's or activated carbon, etc. This assessment summarizes the validity of graphene and its composite as a superior adsorbent for decontamination of Cd from aqueous environment; in addition, this evaluation also pronounces the toxicity profile of trace graphene and necessity of regeneration of the adsorbent.


Assuntos
Cádmio/química , Grafite/química , Poluentes Químicos da Água/química , Adsorção , Animais , Cádmio/análise , Cádmio/toxicidade , Intoxicação por Cádmio , Reutilização de Equipamento , Grafite/toxicidade , Humanos , Modelos Teóricos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos
5.
3 Biotech ; 8(10): 411, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30237958

RESUMO

Utility of silver metal in antimicrobial therapy is an accepted practice since ages that faded with time because of the identification of a few silver resistant strains in the contemporary era. A successive development of antibiotics soon followed. However, due to an indiscriminate and unregulated use coupled with poor legal control measures and a dearth of expertise in handling the critical episodes, the antibiotics era has already seen a steep decline in the past decades due to the evolution of multi-drug resistant 'superbugs' which pose a sizeable challenge to manage with. Due to limited options in the pipeline and no clear strategy in the forefront, the aspirations for novel, MDR focused drug discovery to target the 'superbugs' arose which once again led to the rise of AgNPs in antimicrobial research. In this review, we have focused on the green routes for the synthesis of AgNPs, the mode of microbial inhibition by AgNPs, synergistic effect of AgNPs with antibiotics and future challenges for the development of nano-silver-based therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA