Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13365, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862686

RESUMO

In additive manufacturing (AM), process defects such as keyhole pores are difficult to anticipate, affecting the quality and integrity of the AM-produced materials. Hence, considerable efforts have aimed to predict these process defects by training machine learning (ML) models using passive measurements such as acoustic emissions. This work considered a dataset in which keyhole pores of a laser powder bed fusion (LPBF) experiment were identified using X-ray radiography and then registered both in space and time to acoustic measurements recorded during the LPBF experiment. Due to AM's intrinsic process controls, where a pore-forming event is relatively rare, the acoustic datasets collected during monitoring include more non-pores than pores. In other words, the dataset for ML model development is imbalanced. Moreover, this imbalanced and sparse data phenomenon remains ubiquitous across many AM monitoring schemes since training data is nontrivial to collect. Hence, we propose a machine learning approach to improve this dataset imbalance and enhance the prediction accuracy of pore-labeled data. Specifically, we investigate how data augmentation helps predict pores and non-pores better. This imbalance is improved using recent advances in data augmentation called Mixup, a weak-supervised learning method. Convolutional neural networks (CNNs) are trained on original and augmented datasets, and an appreciable increase in performance is reported when testing on five different experimental trials. When ML models are trained on original and augmented datasets, they achieve an accuracy of 95% and 99% on test datasets, respectively. We also provide information on how dataset size affects model performance. Lastly, we investigate the optimal Mixup parameters for augmentation in the context of CNN performance.

3.
Front Artif Intell ; 5: 963781, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714205

RESUMO

This study describes accurate, computationally efficient models that can be implemented for practical use in predicting frost events for point-scale agricultural applications. Frost damage in agriculture is a costly burden to farmers and global food security alike. Timely prediction of frost events is important to reduce the cost of agricultural frost damage and traditional numerical weather forecasts are often inaccurate at the field-scale in complex terrain. In this paper, we developed machine learning (ML) algorithms for the prediction of such frost events near Alcalde, NM at the point-scale. ML algorithms investigated include deep neural network, convolution neural networks, and random forest models at lead-times of 6-48 h. Our results show promising accuracy (6-h prediction RMSE = 1.53-1.72°C) for use in frost and minimum temperature prediction applications. Seasonal differences in model predictions resulted in a slight negative bias during Spring and Summer months and a positive bias in Fall and Winter months. Additionally, we tested the model transferability by continuing training and testing using data from sensors at a nearby farm. We calculated the feature importance of the random forest models and were able to determine which parameters provided the models with the most useful information for predictions. We determined that soil temperature is a key parameter in longer term predictions (>24 h), while other temperature related parameters provide the majority of information for shorter term predictions. The model error compared favorable to previous ML based frost studies and outperformed the physically based High Resolution Rapid Refresh forecasting system making our ML-models attractive for deployment toward real-time monitoring of frost events and damage at commercial farming operations.

4.
Sci Rep ; 11(1): 21730, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741046

RESUMO

We present a novel workflow for forecasting production in unconventional reservoirs using reduced-order models and machine-learning. Our physics-informed machine-learning workflow addresses the challenges to real-time reservoir management in unconventionals, namely the lack of data (i.e., the time-frame for which the wells have been producing), and the significant computational expense of high-fidelity modeling. We do this by applying the machine-learning paradigm of transfer learning, where we combine fast, but less accurate reduced-order models with slow, but accurate high-fidelity models. We use the Patzek model (Proc Natl Acad Sci 11:19731-19736, https://doi.org/10.1073/pnas.1313380110 , 2013) as the reduced-order model to generate synthetic production data and supplement this data with synthetic production data obtained from high-fidelity discrete fracture network simulations of the site of interest. Our results demonstrate that training with low-fidelity models is not sufficient for accurate forecasting, but transfer learning is able to augment the knowledge and perform well once trained with the small set of results from the high-fidelity model. Such a physics-informed machine-learning (PIML) workflow, grounded in physics, is a viable candidate for real-time history matching and production forecasting in a fractured shale gas reservoir.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA