Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39210746

RESUMO

Exposure to infectious or non-infectious immune activation during early development is a serious risk factor for long-term behavioural dysfunctions. Mouse models of maternal immune activation (MIA) have increasingly been used to address neuronal and behavioural dysfunctions in response to prenatal infections. One commonly employed MIA model involves administering poly(I:C) (polyriboinosinic-polyribocytdilic acid), a synthetic analogue of double-stranded RNA, during gestation, which robustly induces an acute viral-like inflammatory response. Using electroencephalography (EEG) and infrared (IR) activity recordings, we explored alterations in sleep/wake, circadian and locomotor activity patterns on the adult male offspring of poly(I:C)-treated mothers. Our findings demonstrate that these offspring displayed reduced home cage activity during the (subjective) night under both light/dark or constant darkness conditions. In line with this finding, these mice exhibited an increase in non-rapid eye movement (NREM) sleep duration as well as an increase in sleep spindles density. Following sleep deprivation, poly(I:C)-exposed offspring extended NREM sleep duration and prolonged NREM sleep bouts during the dark phase as compared with non-exposed mice. Additionally, these mice exhibited a significant alteration in NREM sleep EEG spectral power under heightened sleep pressure. Together, our study highlights the lasting effects of infection and/or immune activation during pregnancy on circadian activity and sleep/wake patterns in the offspring.

2.
Transl Psychiatry ; 14(1): 289, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009558

RESUMO

Prenatal exposure to infections is a risk factor for neurodevelopmental disorders in offspring, and alterations in mitochondrial function are discussed as a potential underlying factor. Here, using a mouse model of viral-like maternal immune activation (MIA) based on poly(I:C) (POL) treatment at gestational day (GD) 12, we show that adult offspring exhibit behavioral deficits, such as reduced levels of social interaction. In addition, we found increased nicotinamidadenindinucleotid (NADH)- and succinate-linked mitochondrial respiration and maximal electron transfer capacity in the prefrontal cortex (PFC) and in the amygdala (AMY) of males and females. The increase in respiratory capacity resulted from an increase in mitochondrial mass in neurons (as measured by complex IV activity and transcript expression), presumably to compensate for a reduction in mitochondrion-specific respiration. Moreover, in the PFC of control (CON) male offspring a higher excess capacity compared to females was observed, which was significantly reduced in the POL-exposed male offspring, and, along with a higher leak respiration, resulted in a lower mitochondrial coupling efficiency. Transcript expression of the uncoupling proteins (UCP4 and UCP5) showed a reduction in the PFC of POL male mice, suggesting mitochondrial dysfunction. In addition, in the PFC of CON females, a higher expression of the antioxidant enzyme superoxide dismutase (SOD1) was observed, suggesting a higher antioxidant capacity as compared to males. Finally, transcripts analysis of genes involved in mitochondrial biogenesis and dynamics showed reduced expression of fission/fusion transcripts in PFC of POL offspring of both sexes. In conclusion, we show that MIA causes alterations in neuronal mitochondrial function and mass in the PFC and AMY of adult offspring with some effects differing between males and females.


Assuntos
Mitocôndrias , Córtex Pré-Frontal , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Efeitos Tardios da Exposição Pré-Natal/imunologia , Gravidez , Mitocôndrias/metabolismo , Camundongos , Masculino , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/imunologia , Poli I-C/farmacologia , Modelos Animais de Doenças , Encéfalo/imunologia , Encéfalo/metabolismo , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/imunologia , Comportamento Animal , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/imunologia
3.
Transl Psychiatry ; 14(1): 300, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033141

RESUMO

The Poly (I:C) (polyriboinosinic-polyribocytidilic acid) paradigm of maternal immune activation (MIA) is most widely used as experimental model for the evaluation of the effects of gestational infection on the brain and behavior of the progeny. We have previously reported significant batch-to-batch variability in the effects of Poly (I:C), purchased from the same supplier (Sigma-Aldrich), on maternal and fetal immune responses and found these differences to be dependent on the relative amount of synthetic double-stranded RNA fragments in the high versus low molecular weight (LMW) range contained in the compound. We here resorted to Poly (I:C) purified for LMW dsRNA fragments to establish a MIA paradigm with increased reproducibility and enhanced standardization in an effort to refine the MIA paradigm and characterize its effect on offspring behavior. We found that the parallel application of LMW Poly (I:C) in two different MIA-experienced laboratories (Vienna and Zurich) yielded differential outcomes in terms of maternal immune responses and behavioral phenotypes in the offspring generation. In both experimental sites, administration of LMW Poly (I:C) induced a significant sickness response and cytokine induction in the pregnant dam and fetal brains, while the expected deficit in sociability as one main behavioral outcome parameter in the MIA progeny, was only present in the Zurich, but not the Vienna cohort. We conclude that although using Poly (I:C) purified for a defined molecular weight range reduces batch-to-batch variability, it does not make the MIA model more reliable and robust. The differential response in behavioral phenotypes of the MIA offspring between the two laboratories illustrates the highly complex interaction between prenatal and postnatal milieus - including the laboratory environment - that determine offspring phenotypic outcomes after MIA. Consequently, establishing a new MIA protocol or implementing the MIA model firstly under new or changed environmental conditions must include the assessment of offspring behavior to ensure solid and reproducible experimental outcomes.


Assuntos
Poli I-C , Efeitos Tardios da Exposição Pré-Natal , Poli I-C/farmacologia , Feminino , Gravidez , Animais , Efeitos Tardios da Exposição Pré-Natal/imunologia , Peso Molecular , Modelos Animais de Doenças , Citocinas/imunologia , Comportamento Animal/efeitos dos fármacos , Masculino
4.
Brain Behav Immun ; 120: 391-402, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897330

RESUMO

Rodent models of maternal immune activation (MIA) are increasingly used as experimental tools in preclinical research of immune-mediated neurodevelopmental disorders and mental illnesses. Using a viral-like MIA model that is based on prenatal poly(I:C) exposure in mice, we have recently identified the existence of subgroups of MIA-exposed offspring that show dissociable behavioral, transcriptional, brain network and inflammatory profiles even under conditions of genetic homogeneity and identical MIA. Here, we tested the hypothesis that the intrauterine positions of fetuses, which are known to shape individual variability in litter-bearing mammals through variations in fetal hormone exposure, may contribute to the variable outcomes of MIA in mice. MIA was induced by maternal administration of poly(I:C) on gestation day 12 in C57BL/6N mice. Determining intrauterine positions using delivery by Cesarean section (C-section), we found that MIA-exposed offspring developing between female fetuses only (0M-MIA offspring) displayed significant deficits in sociability and sensorimotor gating at adult age, whereas MIA-exposed offspring developing between one or two males in utero (1/2M-MIA offspring) did not show the same deficits. These intrauterine position effects similarly emerged in male and female offspring. Furthermore, while MIA elevated fetal brain levels of pro- and anti-inflammatory cytokines independently of the precise intrauterine position and sex of adjacent fetuses during the acute phase, fetal brain levels of TNF-α remained elevated in 0M-MIA but not 1/2M-MIA offspring until the post-acute phase in late gestation. As expected, 1/2M offspring generally showed higher testosterone levels in the fetal brain during late gestation as compared to 0M offspring, confirming the transfer of testosterone from male fetuses to adjacent male or female fetuses. Taken together, our findings identify a novel source of within-litter variability contributing to heterogeneous outcomes of short- and long-term effects in a mouse model of MIA. In broader context, our findings highlight that individual differences in fetal exposure to hormonal and inflammatory signals may be a perinatal factor that shapes risk and resilience to MIA.


Assuntos
Encéfalo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Poli I-C , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Gravidez , Camundongos , Masculino , Poli I-C/farmacologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Encéfalo/metabolismo , Encéfalo/imunologia , Citocinas/metabolismo , Transtornos do Neurodesenvolvimento/imunologia , Comportamento Animal/fisiologia , Feto/imunologia , Feto/metabolismo , Útero/metabolismo , Útero/imunologia
5.
Cereb Cortex ; 33(5): 2273-2286, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36857721

RESUMO

Prenatal exposure to infectious or noninfectious immune activation is an environmental risk factor for neurodevelopmental disorders and mental illnesses. Recent research using animal models suggests that maternal immune activation (MIA) during early to middle stages of pregnancy can induce transgenerational effects on brain and behavior, likely via inducing stable epigenetic modifications across generations. Using a mouse model of viral-like MIA, which is based on gestational treatment with poly(I:C), the present study explored whether transgenerational effects can also emerge when MIA occurs in late pregnancy. Our findings demonstrate that the direct descendants born to poly(I:C)-treated mothers display deficits in temporal order memory, which are similarly present in second- and third-generation offspring. These transgenerational effects were mediated via both the maternal and paternal lineages and were accompanied by transient changes in maternal care. In addition to the cognitive effects, late prenatal immune activation induced generation-spanning effects on the prefrontal expression of gamma-aminobutyric acid (GABA)ergic genes, including parvalbumin and distinct alpha-subunits of the GABAA receptor. Together, our results suggest that MIA in late pregnancy has the potential to affect cognitive functions and prefrontal gene expression patterns in multiple generations, highlighting its role in shaping disease risk across generations.


Assuntos
Encéfalo , Cognição , Fenômenos do Sistema Imunitário , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Gravidez , Modelos Animais de Doenças , Epigênese Genética , Poli I-C , Camundongos
6.
Brain Behav Immun ; 107: 201-214, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243285

RESUMO

Endogenous retroviruses (ERVs) are ancestorial retroviral elements that were integrated into the mammalian genome through germline infections and insertions during evolution. While increased ERV expression has been repeatedly implicated in psychiatric and neurodevelopmental disorders, recent evidence suggests that aberrant endogenous retroviral activity may contribute to biologically defined subgroups of psychotic disorders with persisting immunological dysfunctions. Here, we explored whether ERV expression is altered in a mouse model of maternal immune activation (MIA), a transdiagnostic environmental risk factor of psychiatric and neurodevelopmental disorders. MIA was induced by maternal administration of poly(I:C) on gestation day 12 in C57BL/6N mice. Murine ERV transcripts were quantified in the placentae and fetal brains shortly after poly(I:C)-induced MIA, as well as in adult offspring that were stratified according to their behavioral profiles. We found that MIA increased and reduced levels of class II ERVs and syncytins, respectively, in placentae and fetal brain tissue. We also revealed abnormal ERV expression in MIA-exposed offspring depending on whether they displayed overt behavioral anomalies or not. Taken together, our findings provide a proof of concept that an inflammatory stimulus, even when initiated in prenatal life, has the potential of altering ERV expression across fetal to adult stages of development. Moreover, our data highlight that susceptibility and resilience to MIA are associated with differential ERV expression, suggesting that early-life exposure to inflammatory factors may play a role in determining disease susceptibility by inducing persistent alterations in the expression of endogenous retroviral elements.


Assuntos
Família , Vitaminas , Animais , Camundongos , Camundongos Endogâmicos C57BL , Mamíferos
7.
BMC Biol ; 20(1): 170, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907861

RESUMO

BACKGROUND: Neuropsychiatric disorders, such as schizophrenia (SZ) and autism spectrum disorder (ASD), are common, multi-factorial and multi-symptomatic disorders. Ample evidence implicates oxidative stress, deficient repair of oxidative DNA lesions and DNA damage in the development of these disorders. However, it remains unclear whether insufficient DNA repair and resulting DNA damage are causally connected to their aetiopathology, or if increased levels of DNA damage observed in patient tissues merely accumulate as a consequence of cellular dysfunction. To assess a potential causal role for deficient DNA repair in the development of these disorders, we behaviourally characterized a mouse model in which CaMKIIa-Cre-driven postnatal conditional knockout (KO) of the core base-excision repair (BER) protein XRCC1 leads to accumulation of unrepaired DNA damage in the forebrain. RESULTS: CaMKIIa-Cre expression caused specific deletion of XRCC1 in the dorsal dentate gyrus (DG), CA1 and CA2 and the amygdala and led to increased DNA damage therein. While motor coordination, cognition and social behaviour remained unchanged, XRCC1 KO in the forebrain caused increased anxiety-like behaviour in males, but not females, as assessed by the light-dark box and open field tests. Conversely, in females but not males, XRCC1 KO caused an increase in learned fear-related behaviour in a cued (Pavlovian) fear conditioning test and a contextual fear extinction test. The relative density of the GABA(A) receptor alpha 5 subunit (GABRA5) was reduced in the amygdala and the dorsal CA1 in XRCC1 KO females, whereas male XRCC1 KO animals exhibited a significant reduction of GABRA5 density in the CA3. Finally, assessment of fast-spiking, parvalbumin-positive (PV) GABAergic interneurons revealed a significant increase in the density of PV+ cells in the DG of male XRCC1 KO mice, while females remained unchanged. CONCLUSIONS: Our results suggest that accumulation of unrepaired DNA damage in the forebrain alters the GABAergic neurotransmitter system and causes behavioural deficits in relation to innate and learned anxiety in a sex-dependent manner. Moreover, the data uncover a previously unappreciated connection between BER deficiency, unrepaired DNA damage in the hippocampus and a sex-specific anxiety-like phenotype with implications for the aetiology and therapy of neuropsychiatric disorders.


Assuntos
Transtorno do Espectro Autista , Extinção Psicológica , Animais , Ansiedade/genética , DNA , Dano ao DNA , Reparo do DNA , Medo/fisiologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Prosencéfalo
8.
Sci Adv ; 8(9): eabi6672, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35235358

RESUMO

The prefrontal cortex (PFC) is a cortical brain region that regulates various cognitive functions. One distinctive feature of the PFC is its protracted adolescent maturation, which is necessary for acquiring mature cognitive abilities in adulthood. Here, we show that microglia, the brain's resident immune cells, contribute to this maturational process. We find that transient and cell-specific deficiency of prefrontal microglia in adolescence is sufficient to induce an adult emergence of PFC-associated impairments in cognitive functions, dendritic complexity, and synaptic structures. While prefrontal microglia deficiency in adolescence also altered the excitatory-inhibitory balance in adult prefrontal circuits, there were no cognitive sequelae when prefrontal microglia were depleted in adulthood. Thus, our findings identify adolescence as a sensitive period for prefrontal microglia to act on cognitive development.

9.
Mol Psychiatry ; 26(11): 6756-6772, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34002019

RESUMO

Antenatal psychopathology negatively affects obstetric outcomes and exerts long-term consequences on the offspring's wellbeing and mental health. However, the precise mechanisms underlying these associations remain largely unknown. Here, we present a novel model system in mice that allows for experimental investigations into the effects of antenatal depression-like psychopathology and for evaluating the influence of maternal pharmacological treatments on long-term outcomes in the offspring. This model system in based on rearing nulliparous female mice in social isolation prior to mating, leading to a depressive-like state that is initiated before and continued throughout pregnancy. Using this model, we show that the maternal depressive-like state induced by social isolation can be partially rescued by chronic treatment with the selective serotonin reuptake inhibitor, fluoxetine (FLX). Moreover, we identify numerous and partly sex-dependent behavioral and molecular abnormalities, including increased anxiety-like behavior, cognitive impairments and alterations of the amygdalar transcriptome, in offspring born to socially isolated mothers relative to offspring born to mothers that were maintained in social groups prior to conception. We also found that maternal FLX treatment was effective in preventing some of the behavioral and molecular abnormalities emerging in offspring born to socially isolated mothers. Taken together, our findings suggest that the presence of a depressive-like state during preconception and pregnancy has sex-dependent consequences on brain and behavioral functions in the offspring. At the same time, our study highlights that FLX treatment in dams with a depression-like state can prevent abnormal behavioral development in the offspring.


Assuntos
Depressão , Efeitos Tardios da Exposição Pré-Natal , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Estresse Psicológico/tratamento farmacológico
10.
Lab Anim (NY) ; 50(3): 69-75, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33619409

RESUMO

The designer receptor exclusively activated by designer drugs (DREADD) system is one of the most widely used chemogenetic techniques to modulate the activity of cell populations in the brains of behaving animals. DREADDs are activated by acute or chronic administration of their ligand, clozapine-N-oxide (CNO). There is, however, a current lack of a non-invasive CNO administration technique that can control for drug timing and dosing without inducing substantial distress for the animals. Here, we evaluated whether the recently developed micropipette-guided drug administration (MDA) method, which has been used as a non-invasive and minimally stressful alternative to oral gavages, may be applied to administer CNO orally to activate DREADDs in a dosing- and timing-controlled manner. Unlike standard intraperitoneal injections, administration of vehicle substances via MDA did not elevate plasma levels of the major stress hormone, corticosterone, and did not attenuate exploratory activity in the open field test. At the same time, however, administration of CNO via MDA or intraperitoneally was equally efficient in activating hM3DGq-expressing neurons in the medial prefrontal cortex, as evident by time-dependent increases in mRNA levels of neuronal immediate early genes (cFos, Arc and Zif268) and cFos-immunoreactive neurons. Compared to vehicle given via MDA, oral administration of CNO via MDA was also found to potently increase locomotor activity in mice that express hM3DGq in prefrontal neurons. Taken together, our study confirms the effectiveness of CNO given orally via MDA and provides a novel method for non-stressful, yet well controllable CNO treatments in mouse DREADD systems.


Assuntos
Clozapina , Drogas Desenhadas , Animais , Encéfalo , Camundongos , Neurônios , Óxidos
11.
Mol Psychiatry ; 26(2): 396-410, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33230204

RESUMO

Infectious or noninfectious maternal immune activation (MIA) is an environmental risk factor for psychiatric and neurological disorders with neurodevelopmental etiologies. Whilst there is increasing evidence for significant health consequences, the effects of MIA on the offspring appear to be variable. Here, we aimed to identify and characterize subgroups of isogenic mouse offspring exposed to identical MIA, which was induced in C57BL6/N mice by administration of the viral mimetic, poly(I:C), on gestation day 12. Cluster analysis of behavioral data obtained from a first cohort containing >150 MIA and control offspring revealed that MIA offspring could be stratified into distinct subgroups that were characterized by the presence or absence of multiple behavioral dysfunctions. The two subgroups also differed in terms of their transcriptional profiles in cortical and subcortical brain regions and brain networks of structural covariance, as measured by ex vivo structural magnetic resonance imaging (MRI). In a second, independent cohort containing 50 MIA and control offspring, we identified a subgroup of MIA offspring that displayed elevated peripheral production of innate inflammatory cytokines, including IL-1ß, IL-6, and TNF-α, in adulthood. This subgroup also showed significant impairments in social approach behavior and sensorimotor gating, whereas MIA offspring with a low inflammatory cytokine status did not. Taken together, our results highlight the existence of subgroups of MIA-exposed offspring that show dissociable behavioral, transcriptional, brain network, and immunological profiles even under conditions of genetic homogeneity. These data have relevance for advancing our understanding of the variable neurodevelopmental effects induced by MIA and for biomarker-guided approaches in preclinical psychiatric research.


Assuntos
Comportamento Animal , Efeitos Tardios da Exposição Pré-Natal , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Comportamento Social
12.
Brain Behav Immun ; 80: 406-418, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30980948

RESUMO

Maternal immune activation (MIA) models that are based on administration of the viral mimetic, poly(I:C), are widely used as experimental tools to study neuronal and behavioral dysfunctions in relation to immune-mediated neurodevelopmental disorders and mental illnesses. Evidence from investigations in non-pregnant rodents suggests that different poly(I:C) products can vary in terms of their immunogenicity, even if they are obtained from the same vendor. The present study aimed at extending these findings to pregnant mice, while also controlling various poly(I:C) products for potential contamination with lipopolysaccharide (LPS). We found significant variability between different batches of poly(I:C) potassium salt obtained from the same vendor (Sigma-Aldrich) in terms of the relative amount of dsRNA fragments in the high molecular weight range (1000-6000 nucleotides long) and with regards to their effects on maternal thermoregulation and immune responses in maternal plasma, placenta and fetal brain. Batches of poly(I:C) potassium salt containing larger amounts of high molecular weight fragments induced more extensive effects on thermoregulation and immune responses compared to batches with minimal amounts of high molecular weight fragments. Consistent with these findings, poly(I:C) enriched for high molecular weight dsRNA (HMW) caused larger maternal and placental immune responses compared to low molecular weight (LMW) poly(I:C). These variable effects were unrelated to possible LPS contamination. Finally, we found marked variability between different batches of the poly(I:C) potassium salt in terms of their effects on spontaneous abortion rates. This batch-to-batch variability was confirmed by three independent research groups using distinct poly(I:C) administration protocols in mice. Taken together, the present data confirm that different poly(I:C) products can induce varying immune responses and can differentially affect maternal physiology and pregnancy outcomes. It is therefore pivotal that researchers working with poly(I:C)-based MIA models ascertain and consider the precise molecular composition and immunogenicity of the product in use. We recommend the establishment of reference databases that combine phenotype data with empirically acquired quality information, which can aid the design, implementation and interpretation of poly(I:C)-based MIA models.


Assuntos
Regulação da Temperatura Corporal/efeitos dos fármacos , Poli I-C/farmacologia , Complicações Infecciosas na Gravidez/imunologia , Resultado da Gravidez , Animais , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Feto/imunologia , Lipopolissacarídeos/análise , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Placenta/imunologia , Poli I-C/análise , Gravidez , Complicações Infecciosas na Gravidez/etiologia , RNA/análise
13.
Brain Behav Immun ; 73: 643-660, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30026057

RESUMO

Rodent models of maternal immune activation (MIA) are increasingly used as experimental tools to study neuronal and behavioral dysfunctions in relation to infection-mediated neurodevelopmental disorders. One of the most widely used MIA models is based on gestational administration of poly(I:C) (= polyriboinosinic-polyribocytdilic acid), a synthetic analog of double-stranded RNA that induces a cytokine-associated viral-like acute phase response. The effects of poly(I:C)-induced MIA on phenotypic changes in the offspring are known to be influenced by various factors, including the precise prenatal timing, genetic background, and immune stimulus intensity. Thus far, however, it has been largely ignored whether differences in the basic type of laboratory housing can similarly affect the outcomes of MIA models. Here, we examined this possibility by comparing the poly(I:C)-based MIA model in two housing systems that are commonly used in preclinical mouse research, namely the open cage (OC) and individually ventilated cage (IVC) systems. Pregnant C57BL6/N mice were kept in OCs or IVCs and treated with a low (1 mg/kg, i.v.) or high (5 mg/kg, i.v.) dose of poly(I:C), or with control vehicle solution. MIA or control treatment was induced on gestation day (GD) 9 or 12, and the resulting offspring were raised and maintained in OCs or IVCs until adulthood for behavioral testing. An additional cohort of dams was used to assess the influence of the different caging systems on poly(I:C)-induced cytokine and stress responses in the maternal plasma. Maternal poly(I:C) administration on GD9 caused a dose-dependent increase in spontaneous abortion in IVCs but not in OCs, whereas MIA in IVC systems during a later gestational time-point (GD12) did not affect pregnancy outcomes. Moreover, the precise type of caging system markedly affected maternal cytokines and chemokines at basal states and in response to poly(I:C) and further influenced the maternal levels of the stress hormone, corticosterone. The efficacy of MIA to induce deficits in working memory, social interaction, and sensorimotor gating in the adult offspring was influenced by the different housing conditions, the dosing of poly(I:C), and the precise prenatal timing. Taken together, the present study identifies the basic type of caging system as a novel factor that can confound the outcomes of MIA in mice. Our findings thus urge the need to consider and report the kind of laboratory housing systems used to implement MIA models. Providing this information seems pivotal to yield reproducible results in these models.


Assuntos
Abrigo para Animais/normas , Fenômenos do Sistema Imunitário/fisiologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Animais , Comportamento Animal/fisiologia , Quimiocinas/análise , Citocinas/análise , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Mães , Poli I-C/farmacologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA