Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(13): e2115566119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35333655

RESUMO

SignificanceMitochondria are double-membraned eukaryotic organelles that house the proteins required for generation of ATP, the energy currency of cells. ATP generation within mitochondria is performed by five multisubunit complexes (complexes I to V), the assembly of which is an intricate process. Mutations in subunits of these complexes, or the suite of proteins that help them assemble, lead to a severe multisystem condition called mitochondrial disease. We show that SFXN4, a protein that causes mitochondrial disease when mutated, assists with the assembly of complex I. This finding explains why mutations in SFXN4 cause mitochondrial disease and is surprising because SFXN4 belongs to a family of amino acid transporter proteins, suggesting that it has undergone a dramatic shift in function through evolution.


Assuntos
Complexo I de Transporte de Elétrons , Doenças Mitocondriais , Trifosfato de Adenosina/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Proteínas de Membrana , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação
2.
Front Cell Dev Biol ; 10: 786268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35300415

RESUMO

Mitochondria are complex organelles containing 13 proteins encoded by mitochondrial DNA and over 1,000 proteins encoded on nuclear DNA. Many mitochondrial proteins are associated with the inner or outer mitochondrial membranes, either peripherally or as integral membrane proteins, while others reside in either of the two soluble mitochondrial compartments, the mitochondrial matrix and the intermembrane space. The biogenesis of the five complexes of the oxidative phosphorylation system are exemplars of this complexity. These large multi-subunit complexes are comprised of more than 80 proteins with both membrane integral and peripheral associations and require soluble, membrane integral and peripherally associated assembly factor proteins for their biogenesis. Mutations causing human mitochondrial disease can lead to defective complex assembly due to the loss or altered function of the affected protein and subsequent destabilization of its interactors. Here we couple sodium carbonate extraction with quantitative mass spectrometry (SCE-MS) to track changes in the membrane association of the mitochondrial proteome across multiple human knockout cell lines. In addition to identifying the membrane association status of over 840 human mitochondrial proteins, we show how SCE-MS can be used to understand the impacts of defective complex assembly on protein solubility, giving insights into how specific subunits and sub-complexes become destabilized.

3.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35210360

RESUMO

Cytochrome c oxidase (COX) assembly factor 7 (COA7) is a metazoan-specific assembly factor, critical for the biogenesis of mitochondrial complex IV (cytochrome c oxidase). Although mutations in COA7 have been linked to complex IV assembly defects and neurological conditions such as peripheral neuropathy, ataxia, and leukoencephalopathy, the precise role COA7 plays in the biogenesis of complex IV is not known. Here, we show that loss of COA7 blocks complex IV assembly after the initial step where the COX1 module is built, progression from which requires the incorporation of copper and addition of the COX2 and COX3 modules. The crystal structure of COA7, determined to 2.4 Å resolution, reveals a banana-shaped molecule composed of five helix-turn-helix (α/α) repeats, tethered by disulfide bonds. COA7 interacts transiently with the copper metallochaperones SCO1 and SCO2 and catalyzes the reduction of disulfide bonds within these proteins, which are crucial for copper relay to COX2. COA7 binds heme with micromolar affinity, through axial ligation to the central iron atom by histidine and methionine residues. We therefore propose that COA7 is a heme-binding disulfide reductase for regenerating the copper relay system that underpins complex IV assembly.


Assuntos
Cobre/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Ligantes de Grupo Heme/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Sítios de Ligação , Células HEK293 , Humanos , Proteínas Mitocondriais/química , Relação Estrutura-Atividade
4.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33879611

RESUMO

Mitochondrial disease is a debilitating condition with a diverse genetic etiology. Here, we report that TMEM126A, a protein that is mutated in patients with autosomal-recessive optic atrophy, participates directly in the assembly of mitochondrial complex I. Using a combination of genome editing, interaction studies, and quantitative proteomics, we find that loss of TMEM126A results in an isolated complex I deficiency and that TMEM126A interacts with a number of complex I subunits and assembly factors. Pulse-labeling interaction studies reveal that TMEM126A associates with the newly synthesized mitochondrial DNA (mtDNA)-encoded ND4 subunit of complex I. Our findings indicate that TMEM126A is involved in the assembly of the ND4 distal membrane module of complex I. In addition, we find that the function of TMEM126A is distinct from its paralogue TMEM126B, which acts in assembly of the ND2-module of complex I.


Assuntos
Proteínas de Membrana/metabolismo , NADH Desidrogenase/metabolismo , Atrofia Óptica/genética , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/fisiologia , Células HEK293 , Humanos , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Mutação , NADH Desidrogenase/fisiologia , Atrofia Óptica/metabolismo
5.
Mol Cell Proteomics ; 19(7): 1145-1160, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32317297

RESUMO

Assembly factors play a critical role in the biogenesis of mitochondrial respiratory chain complexes I-IV where they assist in the membrane insertion of subunits, attachment of co-factors, and stabilization of assembly intermediates. The major fraction of complexes I, III and IV are present together in large molecular structures known as respiratory chain supercomplexes. Several assembly factors have been proposed as required for supercomplex assembly, including the hypoxia inducible gene 1 domain family member HIGD2A. Using gene-edited human cell lines and extensive steady state, translation and affinity enrichment proteomics techniques we show that loss of HIGD2A leads to defects in the de novo biogenesis of mtDNA-encoded COX3, subsequent accumulation of complex IV intermediates and turnover of COX3 partner proteins. Deletion of HIGD2A also leads to defective complex IV activity. The impact of HIGD2A loss on complex IV was not altered by growth under hypoxic conditions, consistent with its role being in basal complex IV assembly. Although in the absence of HIGD2A we show that mitochondria do contain an altered supercomplex assembly, we demonstrate it to harbor a crippled complex IV lacking COX3. Our results redefine HIGD2A as a classical assembly factor required for building the COX3 module of complex IV.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Espectrometria de Massas , Mitocôndrias/genética , Membranas Mitocondriais/enzimologia , Proteínas Mitocondriais/genética , Oxigênio/metabolismo
6.
Cell Rep ; 31(3): 107541, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32320651

RESUMO

Mitochondrial complex I harbors 7 mitochondrial and 38 nuclear-encoded subunits. Its biogenesis requires the assembly and integration of distinct intermediate modules, mediated by numerous assembly factors. The mitochondrial complex I intermediate assembly (MCIA) complex, containing assembly factors NDUFAF1, ECSIT, ACAD9, and TMEM126B, is required for building the intermediate ND2-module. The role of the MCIA complex and the involvement of other proteins in the biogenesis of this module is unclear. Cell knockout studies reveal that while each MCIA component is critical for complex I assembly, a hierarchy of stability exists centered on ACAD9. We also identify TMEM186 and COA1 as bona fide components of the MCIA complex with loss of either resulting in MCIA complex defects and reduced complex I assembly. TMEM186 enriches with newly translated ND3, and COA1 enriches with ND2. Our findings provide new functional insights into the essential nature of the MCIA complex in complex I assembly.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Biogênese de Organelas , Humanos , Fosforilação Oxidativa
7.
Mol Cell Proteomics ; 19(1): 65-77, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31666358

RESUMO

NDUFAB1 is the mitochondrial acyl carrier protein (ACP) essential for cell viability. Through its pantetheine-4'-phosphate post-translational modification, NDUFAB1 interacts with members of the leucine-tyrosine-arginine motif (LYRM) protein family. Although several LYRM proteins have been described to participate in a variety of defined processes, the functions of others remain either partially or entirely unknown. We profiled the interaction network of NDUFAB1 to reveal associations with 9 known LYRM proteins as well as more than 20 other proteins involved in mitochondrial respiratory chain complex and mitochondrial ribosome assembly. Subsequent knockout and interaction network studies in human cells revealed the LYRM member AltMiD51 to be important for optimal assembly of the large mitoribosome subunit, consistent with recent structural studies. In addition, we used proteomics coupled with topographical heat-mapping to reveal that knockout of LYRM2 impairs assembly of the NADH-dehydrogenase module of complex I, leading to defects in cellular respiration. Together, this work adds to the catalogue of functions executed by LYRM family of proteins in building mitochondrial complexes and emphasizes the common and essential role of NDUFAB1 as a protagonist in mitochondrial metabolism.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , Mapas de Interação de Proteínas , Sequência de Aminoácidos , Células HEK293 , Humanos , Marcação por Isótopo , Membranas Mitocondriais/metabolismo , Proteínas Ribossômicas/metabolismo , Transfecção
8.
Elife ; 72018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30204084

RESUMO

The mitochondrion of apicomplexan parasites is critical for parasite survival, although the full complement of proteins that localize to this organelle has not been defined. Here we undertake two independent approaches to elucidate the mitochondrial proteome of the apicomplexan Toxoplasma gondii. We identify approximately 400 mitochondrial proteins, many of which lack homologs in the animals that these parasites infect, and most of which are important for parasite growth. We demonstrate that one such protein, termed TgApiCox25, is an important component of the parasite cytochrome c oxidase (COX) complex. We identify numerous other apicomplexan-specific components of COX, and conclude that apicomplexan COX, and apicomplexan mitochondria more generally, differ substantially in their protein composition from the hosts they infect. Our study highlights the diversity that exists in mitochondrial proteomes across the eukaryotic domain of life, and provides a foundation for defining unique aspects of mitochondrial biology in an important phylum of parasites.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Proteoma/metabolismo , Toxoplasma/metabolismo , Animais , Biotinilação , Biologia Computacional , Técnicas de Silenciamento de Genes , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Consumo de Oxigênio , Parasitos/crescimento & desenvolvimento , Parasitos/metabolismo , Fenótipo , Filogenia , Proteômica , Proteínas de Protozoários/metabolismo , Toxoplasma/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA