Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 10(11): 3089-3103, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30346520

RESUMO

Bartonella is a genetically diverse group of vector-borne bacteria. Over 40 species have been characterized to date, mainly from mammalian reservoirs and arthropod vectors. Rodent reservoirs harbor one of the largest Bartonella diversity described to date, and novel species and genetic variants are continuously identified from these hosts. Yet, it is still unknown if this significant genetic diversity stems from adaptation to different niches or from intrinsic high mutation rates. Here, we explored the vertical occurrence of spontaneous genomic alterations in 18 lines derived from two rodent-associated Bartonella elizabethae-like strains, evolved in nonselective agar plates under conditions mimicking their vector- and mammalian-associated temperatures, and the transmission cycles between them (i.e., 26 °C, 37 °C, and alterations between the two), using mutation accumulation experiments. After ∼1,000 generations, evolved genomes revealed few point mutations (average of one-point mutation per line), evidencing conserved single-nucleotide mutation rates. Interestingly, three large structural genomic changes (two large deletions and an inversion) were identified over all lines, associated with prophages and surface adhesin genes. Particularly, a prophage, deleted during constant propagation at 37 °C, was associated with an increased autonomous replication at 26 °C (the flea-associated temperature). Complementary molecular analyses of wild strains, isolated from desert rodents and their fleas, further supported the occurrence of structural genomic variations and prophage-associated deletions in nature. Our findings suggest that structural genomic changes represent an effective intrinsic mechanism to generate diversity in slow-growing bacteria and emphasize the role of prophages as promoters of diversity in nature.


Assuntos
Bartonella/genética , Evolução Biológica , Variação Estrutural do Genoma , Prófagos/fisiologia , Bartonella/virologia , Genoma Bacteriano , Família Multigênica
2.
Hortic Res ; 5: 28, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29872533

RESUMO

The Tomato Hybrid Proline-rich Protein (THyPRP) gene was specifically expressed in the tomato (Solanum lycopersicum) flower abscission zone (FAZ), and its stable antisense silencing under the control of an abscission zone (AZ)-specific promoter, Tomato Abscission Polygalacturonase4, significantly inhibited tomato pedicel abscission following flower removal. For understanding the THyPRP role in regulating pedicel abscission, a transcriptomic analysis of the FAZ of THyPRP-silenced plants was performed, using a newly developed AZ-specific tomato microarray chip. Decreased expression of THyPRP in the silenced plants was already observed before abscission induction, resulting in FAZ-specific altered gene expression of transcription factors, epigenetic modifiers, post-translational regulators, and transporters. Our data demonstrate that the effect of THyPRP silencing on pedicel abscission was not mediated by its effect on auxin balance, but by decreased ethylene biosynthesis and response. Additionally, THyPRP silencing revealed new players, which were demonstrated for the first time to be involved in regulating pedicel abscission processes. These include: gibberellin perception, Ca2+-Calmodulin signaling, Serpins and Small Ubiquitin-related Modifier proteins involved in post-translational modifications, Synthaxin and SNARE-like proteins, which participate in exocytosis, a process necessary for cell separation. These changes, occurring in the silenced plants early after flower removal, inhibited and/or delayed the acquisition of the competence of the FAZ cells to respond to ethylene signaling. Our results suggest that THyPRP acts as a master regulator of flower abscission in tomato, predominantly by playing a role in the regulation of the FAZ cell competence to respond to ethylene signals.

3.
Tuberculosis (Edinb) ; 109: 123-133, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29559116

RESUMO

Transmission of Mycobacterium tuberculosis bacilli from one individual to another is the basis of the disease process. While considerable emphasis has been placed on the role of host mechanisms of resistance in establishing or preventing new infection, far less has been expended on understanding possible factors operative at the bacterial level. In this study we established a panel of clinical isolates of M. tuberculosis strains obtained from the Western Cape region of South Africa, each of which had been carefully tracked in terms of their degree of transmission in the community. Each of the panel were used to infect guinea pigs with 15-20 bacilli by aerosol exposure and the course of the infection then determined. Strains with different degrees of transmission could not be distinguished in terms of their capacity to grow in the main target organs of infected animals. However, rather surprisingly, while strains with no evidence of transmission [NOT] in general caused moderate to severe lung damage, this parameter in animals infected with highly transmitted [HT] strains was mostly mild. In terms of TH1 immunity these signals were strongest in these latter animals, as was IL-17 gene expression, whereas minimal signals for regulatory molecules including IL-10 and FoxP3 were seen across the entire panel. In terms of T cell numbers, responses of both CD4 and CD8 were both far faster and far higher in animals infected with the HT strains. At the gene expression level we observed a major three-fold difference [both up and down] between NOT and HT strains, but in terms of proteins of key interest only a few [including PD-L1 and HIF-3] showed major differences between the two groups. Overall, it was apparent that NOT strains were far more inflammatory that HT strains, and appeared to trigger a much larger number of genes, possibly explaining the observed damage to the lungs and progressive pathology. In contrast, the HT strains, while equally virulent, were more immunogenic and developed much stronger T cell responses, while keeping lung damage to a minimum. Hence, in terms of trying to explain the capacity of these strains to cause transmission, these results are clearly paradoxical.


Assuntos
Pulmão/microbiologia , Mycobacterium tuberculosis/patogenicidade , Linfócitos T/microbiologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/transmissão , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Cobaias , Interações Hospedeiro-Patógeno , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/isolamento & purificação , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Células Th1/microbiologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/metabolismo , Virulência
4.
AMB Express ; 7(1): 189, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29022235

RESUMO

In the version of this article that was originally published (Laha et al. 2017) the authors did not properly reference one paragraph in the Introduction section.

5.
AMB Express ; 7(1): 132, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28651381

RESUMO

Identification of floral samples present in honey is important in order to determine the medicinal value, enhance the production of honey as well as to conserve the honey bees. Traditional approaches for studying pollen samples are based on microscopic observation which is laborious, time intensive and requires specialized palynological knowledge. Present study compares two composite honey metagenome collected from 20 samples in Mizoram, Northeast India using three gene loci- rbcL, matK and ITS2 that was sequenced using a next-generation sequencing (NGS) platform (Illumina Miseq). Furthermore, a classical palynology study for all 20 samples was carried out to evaluate the NGS approach. NGS based approach and pollen microscopic studies were able to detect the most abundant floral components of honey. We investigated the plants that were frequently used by honey bees by examining the results obtained from both the techniques. Microscopic examination of pollens detected plants with a broad taxonomic range covering 26 families. NGS based multigene approach revealed diverse plant species, which was higher than in any other previously reported techniques using a single locus. Frequently found herbaceous species were from the family Poaceae, Myrtaceae, Fabaceae and Asteraceae. The future NGS based approach using multi-loci target, with the help of an improved and robust plant database, can be a potential replacement technique for tedious microscopic studies to identify the polleniferous plants.

6.
Acta Trop ; 164: 438-447, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27720625

RESUMO

High density oligonucleotide microarrays have been used on Plasmodium vivax field isolates to estimate whole genome expression. However, no microarray platform has been experimentally optimized for studying the transcriptome of field isolates. In the present study, we adopted both bioinformatics and experimental testing approaches to select best optimized probes suitable for detecting parasite transcripts from field samples and included them in designing a custom 15K P. vivax microarray. This microarray has long oligonucleotide probes (60mer) that were in-situ synthesized onto glass slides using Agilent SurePrint technology and has been developed into an 8X15K format (8 identical arrays on a single slide). Probes in this array were experimentally validated and represents 4180 P. vivax genes in sense orientation, of which 1219 genes have also probes in antisense orientation. Validation of the 15K array by using field samples (n=14) has shown 99% of parasite transcript detection from any of the samples. Correlation analysis between duplicate probes (n=85) present in the arrays showed perfect correlation (r2=0.98) indicating the reproducibility. Multiple probes representing the same gene exhibited similar kind of expression pattern across the samples (positive correlation, r≥0.6). Comparison of hybridization data with the previous studies and quantitative real-time PCR experiments were performed to highlight the microarray validation procedure. This array is unique in its design, and results indicate that the array is sensitive and reproducible. Hence, this microarray could be a valuable functional genomics tool to generate reliable expression data from P. vivax field isolates.


Assuntos
Perfilação da Expressão Gênica/instrumentação , Malária Vivax/genética , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Plasmodium vivax/genética , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes
7.
Genom Data ; 9: 118-25, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27489776

RESUMO

Malarial parasite P. falciparum, an apicomplexan protozoan has a 23.3 MB nuclear genome and encodes ~ 5600 transcripts. The genetic diversity of the parasite within and across geographical zones is a challenge to gene expression studies which are essential for understanding of disease process, outcome and developing markers for diagnostics and prognostics. Here, we describe the strategy involved in designing a custom P. falciparum 15K array using the Agilent platform and Genotypic's Right Design methodology to study the transcriptome of Indian field isolates for which genome sequence information is limited. The array contains probes representing genome sequences of two distinct geographical isolates (i.e. 3D7 and HB3) and sub-telomeric var gene sequences of a third isolate (IT4) known to adhere in culture condition. Probes in the array have been selected based on their efficiency to detect transcripts through a 244K array experimentation. Array performance for the 15K array, was evaluated and validated using RNA materials from P. falciparum clinical isolates. A large percentage (91%) of the represented transcripts was detected from Indian P. falciparum patient isolates. Replicated probes and multiple probes representing the same gene showed perfect correlation between them suggesting good probe performance. Additional transcripts could be detected due to inclusion of unique probes representing HB3 strain transcripts. Variant surface antigen (VSA) transcripts were detected by optimized probes representing the VSA genes of three geographically distinct strains. The 15K cross strain P. falciparum array has shown good efficiency in detecting transcripts from P. falciparum parasite samples isolated from patients. The low parasite loads and presence of host RNA makes arrays a preferred platform for gene expression studies over RNA-Seq.

9.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(5): 3755-6, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26360118

RESUMO

The complete mitochondrial genome of Himalayan bee Apis laboriosa, from Mizoram, India, has been sequenced using Illumina NextSeq500 platform and analysed. The mitogenome was assembled and found to be 15 266 bp in length and the gene arrangement is similar to other honey bee species. The A. laboriosa mitogenome comprises of 13 protein-coding genes (PCGs), 22 tRNAs, 2 rRNAs and an A + T-rich region of 346 bp. Based on the concatenated PCGs, in the phylogenetic tree, A. laboriosa is placed as a sister group along with the cavity nesting honey bees. The present study reports the first complete mitochondrial genome sequence of A. laboriosa, which will enhance our knowledge on Apinae mitogenomes and phylogeny.


Assuntos
Abelhas/genética , Genoma Mitocondrial , Animais , Ordem dos Genes , Genes de Insetos , Filogenia , RNA Ribossômico/genética , RNA de Transferência/genética , Sequenciamento Completo do Genoma
10.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(6): 4663-4664, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26643789

RESUMO

The complete mitogenome of Apis cerana cerana (Hymenoptera: Apidae: Apinae) was sequenced using Illumina NextSeq500 platform and found to be 15 831 bp long. The mitogenome contains 37 genes (13 PCGs, 22 tRNAs, and 2 rRNAs) and a control region. The base composition is biased towards A-T (83.9%). The control region is 498 bp long with polyT stretch and poly [TA (A)]n-like stretch. The phylogenetic tree constructed using concatenated PCGs showed that A. cerana cerana clustered with other cavity nesting Apis species.


Assuntos
Abelhas/genética , Genes de Insetos , Genes Mitocondriais , Genoma Mitocondrial , Animais , Composição de Bases , Abelhas/classificação , Evolução Molecular , Filogenia , Análise de Sequência de DNA
11.
Genom Data ; 4: 24-5, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26484171

RESUMO

Apis mellifera intermissa is the native honeybee subspecies of Algeria. A. m. intermissa occurs in Tunisia, Algeria and Morocco, between the Atlas and the Mediterranean and Atlantic coasts. This bee is very important due to its high ability to adapt to great variations in climatic conditions and due to its preferable cleaning behavior. Here we report the draft genome sequence of this honey bee, its Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession JSUV00000000. The 240-Mb genome is being annotated and analyzed. Comparison with the genome of other Apis mellifera sub-species promises to yield insights into the evolution of adaptations to high temperature and resistance to Varroa parasite infestation.

12.
PLoS One ; 10(6): e0128331, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26047102

RESUMO

Bitter gourd (Momordica charantia L.) is a nutritious vegetable crop of Asian origin, used as a medicinal herb in Indian and Chinese traditional medicine. Molecular breeding in bitter gourd is in its infancy, due to limited molecular resources, particularly on functional markers for traits such as gynoecy. We performed de novo transcriptome sequencing of bitter gourd using Illumina next-generation sequencer, from root, flower buds, stem and leaf samples of gynoecious line (Gy323) and a monoecious line (DRAR1). A total of 65,540 transcripts for Gy323 and 61,490 for DRAR1 were obtained. Comparisons revealed SNP and SSR variations between these lines and, identification of gene classes. Based on available transcripts we identified 80 WRKY transcription factors, several reported in responses to biotic and abiotic stresses; 56 ARF genes which play a pivotal role in auxin-regulated gene expression and development. The data presented will be useful in both functions studies and breeding programs in bitter gourd.


Assuntos
Variação Genética , Momordica charantia/genética , Transcriptoma , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Medicina Tradicional , Repetições de Microssatélites/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
PLoS One ; 10(3): e0121912, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25822503

RESUMO

There is limited data on the clinical, cellular and molecular changes in relapsed acute promyeloytic leukemia (RAPL) in comparison with newly diagnosed cases (NAPL). We undertook a prospective study to compare NAPL and RAPL patients treated with arsenic trioxide (ATO) based regimens. 98 NAPL and 28 RAPL were enrolled in this study. RAPL patients had a significantly lower WBC count and higher platelet count at diagnosis. IC bleeds was significantly lower in RAPL cases (P=0.022). The ability of malignant promyelocytes to concentrate ATO intracellularly and their in-vitro IC50 to ATO was not significantly different between the two groups. Targeted NGS revealed PML B2 domain mutations in 4 (15.38%) of the RAPL subset and none were associated with secondary resistance to ATO. A microarray GEP revealed 1744 genes were 2 fold and above differentially expressed between the two groups. The most prominent differentially regulated pathways were cell adhesion (n=92), cell survival (n=50), immune regulation (n=74) and stem cell regulation (n=51). Consistent with the GEP data, immunophenotyping revealed significantly increased CD34 expression (P=0.001) in RAPL cases and there was in-vitro evidence of significant microenvironment mediated innate resistance (EM-DR) to ATO. Resistance and relapse following treatment with ATO is probably multi-factorial, mutations in PML B2 domain while seen only in RAPL may not be the major clinically relevant cause of subsequent relapses. In RAPL additional factors such as expansion of the leukemia initiating compartment along with EM-DR may contribute significantly to relapse following treatment with ATO based regimens.


Assuntos
Antineoplásicos/uso terapêutico , Arsenicais/uso terapêutico , Leucemia Promielocítica Aguda/tratamento farmacológico , Óxidos/uso terapêutico , Adolescente , Adulto , Antineoplásicos/sangue , Trióxido de Arsênio , Arsenicais/sangue , Linhagem Celular Tumoral , Criança , Pré-Escolar , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Perfilação da Expressão Gênica , Células Precursoras de Granulócitos/efeitos dos fármacos , Células Precursoras de Granulócitos/patologia , Células Precursoras de Granulócitos/fisiologia , Humanos , Leucemia Promielocítica Aguda/sangue , Leucemia Promielocítica Aguda/diagnóstico , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas Nucleares/genética , Óxidos/sangue , Proteína da Leucemia Promielocítica , Estudos Prospectivos , Recidiva , Fatores de Transcrição/genética , Tretinoína/uso terapêutico , Proteínas Supressoras de Tumor/genética , Adulto Jovem
14.
Front Plant Sci ; 6: 1258, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26834766

RESUMO

Abscission of flower pedicels and leaf petioles of tomato (Solanum lycopersicum) can be induced by flower removal or leaf deblading, respectively, which leads to auxin depletion, resulting in increased sensitivity of the abscission zone (AZ) to ethylene. However, the molecular mechanisms that drive the acquisition of abscission competence and its modulation by auxin gradients are not yet known. We used RNA-Sequencing (RNA-Seq) to obtain a comprehensive transcriptome of tomato flower AZ (FAZ) and leaf AZ (LAZ) during abscission. RNA-Seq was performed on a pool of total RNA extracted from tomato FAZ and LAZ, at different abscission stages, followed by de novo assembly. The assembled clusters contained transcripts that are already known in the Solanaceae (SOL) genomics and NCBI databases, and over 8823 identified novel tomato transcripts of varying sizes. An AZ-specific microarray, encompassing the novel transcripts identified in this study and all known transcripts from the SOL genomics and NCBI databases, was constructed to study the abscission process. Multiple probes for longer genes and key AZ-specific genes, including antisense probes for all transcripts, make this array a unique tool for studying abscission with a comprehensive set of transcripts, and for mining for naturally occurring antisense transcripts. We focused on comparing the global transcriptomes generated from the FAZ and the LAZ to establish the divergences and similarities in their transcriptional networks, and particularly to characterize the processes and transcriptional regulators enriched in gene clusters that are differentially regulated in these two AZs. This study is the first attempt to analyze the global gene expression in different AZs in tomato by combining the RNA-Seq technique with oligonucleotide microarrays. Our AZ-specific microarray chip provides a cost-effective approach for expression profiling and robust analysis of multiple samples in a rapid succession.

15.
Exp Parasitol ; 141: 39-54, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24657575

RESUMO

Mechanisms regulating gene expression in malaria parasites are not well understood. Little is known about how the parasite regulates its gene expression during transition from one developmental stage to another and in response to various environmental conditions. Parasites in a diseased host face environments which differ from the static, well adapted in vitro conditions. Parasites thus need to adapt quickly and effectively to these conditions by establishing transcriptional states which are best suited for better survival. With the discovery of natural antisense transcripts (NATs) in this parasite and considering the various proposed mechanisms by which NATs might regulate gene expression, it has been speculated that these might be playing a critical role in gene regulation. We report here the diversity of NATs in this parasite, using isolates taken directly from patients with differing clinical symptoms caused by malaria infection. Using a custom designed strand specific whole genome microarray, a total of 797 NATs targeted against annotated loci have been detected. Out of these, 545 NATs are unique to this study. The majority of NATs were positively correlated with the expression pattern of the sense transcript. However, 96 genes showed a change in sense/antisense ratio on comparison between uncomplicated and complicated disease conditions. The antisense transcripts map to a broad range of biochemical/metabolic pathways, especially pathways pertaining to the central carbon metabolism and stress related pathways. Our data strongly suggests that a large group of NATs detected here are unannotated transcription units antisense to annotated gene models. The results reveal a previously unknown set of NATs that prevails in this parasite, their differential regulation in disease conditions and mapping to functionally well annotated genes. The results detailed here call for studies to deduce the possible mechanism of action of NATs, which would further help in understanding the in vivo pathological adaptations of these parasites.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , RNA Antissenso/análise , Adolescente , Adulto , Mapeamento Cromossômico , Feminino , Ontologia Genética , Genoma de Protozoário , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Humanos , Malária Falciparum/complicações , Masculino , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Plasmodium falciparum/classificação , Plasmodium falciparum/isolamento & purificação , Plasmodium falciparum/metabolismo , RNA Antissenso/sangue , RNA de Protozoário/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Adulto Jovem
16.
Genom Data ; 2: 199-201, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26484095

RESUMO

Natural antisense transcripts (NATs) have been detected in many organisms and shown to regulate gene expression. Similarly, NATs have also been observed in malaria parasites with most studies focused on Plasmodium falciparum. There were no reports on the presence of NATs in Plasmodium vivax, which has also been shown to cause severe malaria like P. falciparum, until a recent study published by us. To identify in vivo prevalence of antisense transcripts in P. vivax clinical isolates, we performed whole genome expression profiling using a custom designed strand-specific microarray that contains probes for both sense and antisense strands. Here we describe the experimental methods and analysis of the microarray data available in Gene Expression Omnibus (GEO) under GSE45165. Our data provides a resource for exploring the presence of antisense transcripts in P. vivax isolated from patients showing varying clinical symptoms. Related information about the description and interpretation of the data can be found in a recent publication by Boopathi and colleagues in Infection, Genetics and Evolution 2013.

17.
Genom Data ; 2: 393-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26484136

RESUMO

Antisense transcription is pervasive among biological systems and one of the products of antisense transcription is natural antisense transcripts (NATs). Emerging evidences suggest that they are key regulators of gene expression. With the discovery of NATs in Plasmodium falciparum, it has been suggested that these might also be playing regulatory roles in this parasite. However, all the reports describing the diversity of NATs have come from parasites in culture condition except for a recent study published by us. In order to explore the in vivo diversity of NATs in P. falciparum clinical isolates, we performed a whole genome expression profiling using a strand-specific 244 K microarray that contains probes for both sense and antisense transcripts. In this report, we describe the experimental procedure and analysis thereof of the microarray data published recently in Gene Expression Omnibus (GEO) under accession number GSE44921. This published data provide a wealth of information about the prevalence of NATs in P. falciparum clinical isolates from patients with diverse malaria related disease conditions. Supplementary information about the description and interpretation of the data can be found in a recent publication by Subudhi et al. in Experimental Parasitology (2014).

18.
Tuberculosis (Edinb) ; 94(6): 606-15, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25621360

RESUMO

In this study we conducted a microarray-based whole genomic analysis of gene expression in the lungs after exposure of guinea pigs to a low dose aerosol of the Atypical Beijing Western Cape TT372 strain of Mycobacterium tuberculosis, after harvesting lung tissues three weeks after infection at a time that effector immunity is starting to peak. The infection resulted in a very large up-regulation of multiple genes at this time, particularly in the context of a "chemokine storm" in the lungs. Overall gene expression was considerably reduced in animals that had been vaccinated with BCG two months earlier, but in both cases strong signatures featuring gamma interferon [IFNγ] and tumor necrosis factor [TNFα] were observed indicating the potent TH1 response in these animals. Even though their effects are not seen until later in the infection, even at this early time point gene expression patterns associated with the potential emergence of regulatory T cells were observed. Genes involving lung repair, response to oxidative stress, and cell trafficking were strongly expressed, but interesting these gene patterns differed substantially between the infected and vaccinated/infected groups of animals. Given the importance of this species as a relevant and cost-effective small animal model of tuberculosis, this approach has the potential to provide new information regarding the effects of vaccination on control of the disease process.


Assuntos
Genoma , Mycobacterium tuberculosis/patogenicidade , Tuberculose Pulmonar/genética , Animais , Vacina BCG , Carga Bacteriana/imunologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Cobaias , Interferon gama/biossíntese , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Células Th1/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/prevenção & controle , Fator de Necrose Tumoral alfa/biossíntese , Regulação para Cima , Virulência/genética , Virulência/imunologia
19.
Infect Genet Evol ; 20: 428-43, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24121022

RESUMO

Plasmodium vivax is the most geographically widespread human malaria parasite causing approximately 130-435 million infections annually. It is an economic burden in many parts of the world and poses a public health challenge along with the other Plasmodium sp. The biology of this parasite is less studied and poorly understood, in spite of these facts. Emerging evidence of severe complications due to infections by this parasite provides an impetus to focus research on the same. Investigating the parasite directly from infected patients is the best way to study its biology and pathogenic mechanisms. Gene expression studies of this parasite directly obtained from the patients has provided evidence of gene regulation resulting in varying amount of transcript levels in the different blood stages. The mechanisms regulating gene expression in malaria parasites are not well understood. Discovery of Natural Antisense Transcripts (NATs) in Plasmodium falciparum has suggested that these might play an important role in regulating gene expression. We report here the genome-wide occurrence of NATs in P. vivax parasites from patients with differing clinical symptoms. A total of 1348 NATs against annotated gene loci have been detected using a custom designed microarray with strand specific probes. Majority of NATs identified from this study shows positive correlation with the expression pattern of the sense (S) transcript. Our data also shows condition specific expression patterns of varying S and antisense (AS) transcript levels. Genes with AS transcripts enrich to various biological processes. To our knowledge this is the first report on the presence of NATs from P. vivax obtained from infected patients with different disease complications. The data suggests differential regulation of gene expression in diverse clinical conditions, as shown by differing sense/antisense ratios and would lead to future detailed investigations of gene regulation.


Assuntos
Elementos Antissenso (Genética)/genética , Regulação da Expressão Gênica/genética , Malária Vivax/genética , Plasmodium vivax/genética , RNA Antissenso/genética , Adolescente , Adulto , Mapeamento Cromossômico , Feminino , Humanos , Malária Vivax/parasitologia , Masculino , Plasmodium vivax/isolamento & purificação , RNA de Protozoário/sangue , RNA de Protozoário/genética , Transcrição Gênica , Adulto Jovem
20.
Eukaryot Cell ; 12(8): 1061-71, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23709179

RESUMO

Candida albicans and Candida dubliniensis are diploid, predominantly asexual human-pathogenic yeasts. In this study, we constructed tetraploid (4n) strains of C. albicans of the same or different lineages by spheroplast fusion. Induction of chromosome loss in the tetraploid C. albicans generated diploid or near-diploid progeny strains but did not produce any haploid progeny. We also constructed stable heterotetraploid somatic hybrid strains (2n + 2n) of C. albicans and C. dubliniensis by spheroplast fusion. Heterodiploid (n + n) progeny hybrids were obtained after inducing chromosome loss in a stable heterotetraploid hybrid. To identify a subset of hybrid heterodiploid progeny strains carrying at least one copy of all chromosomes of both species, unique centromere sequences of various chromosomes of each species were used as markers in PCR analysis. The reduction of chromosome content was confirmed by a comparative genome hybridization (CGH) assay. The hybrid strains were found to be stably propagated. Chromatin immunoprecipitation (ChIP) assays with antibodies against centromere-specific histones (C. albicans Cse4/C. dubliniensis Cse4) revealed that the centromere identity of chromosomes of each species is maintained in the hybrid genomes of the heterotetraploid and heterodiploid strains. Thus, our results suggest that the diploid genome content is not obligatory for the survival of either C. albicans or C. dubliniensis. In keeping with the recent discovery of the existence of haploid C. albicans strains, the heterodiploid strains of our study can be excellent tools for further species-specific genome elimination, yielding true haploid progeny of C. albicans or C. dubliniensis in future.


Assuntos
Candida albicans/genética , Proteínas Cromossômicas não Histona/genética , Diploide , Proteínas Fúngicas/genética , Haploidia , Sequência de Bases , Candida albicans/crescimento & desenvolvimento , Candida albicans/patogenicidade , Centrômero/genética , Quimera/genética , Hibridização Genômica Comparativa , Genoma Fúngico , Humanos , Esferoplastos/genética , Esferoplastos/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA