Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(2): e0171741, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28178357

RESUMO

The Golden Gate strategy entails the use of type IIS restriction enzymes, which cut outside of their recognition sequence. It enables unrestricted design of unique DNA fragments that can be readily and seamlessly recombined. Successfully employed in other synthetic biology applications, we demonstrate its advantageous use to engineer a biocatalyst. Hot-spots for mutations were individuated in three distinct regions of Candida antarctica lipase A (Cal-A), the biocatalyst chosen as a target to demonstrate the versatility of this recombination method. The three corresponding gene segments were subjected to the most appropriate method of mutagenesis (targeted or random). Their straightforward reassembly allowed combining products of different mutagenesis methods in a single round for rapid production of a series of diverse libraries, thus facilitating directed evolution. Screening to improve discrimination of short-chain versus long-chain fatty acid substrates was aided by development of a general, automated method for visual discrimination of the hydrolysis of varied substrates by whole cells.


Assuntos
Enzimas/metabolismo , Engenharia de Proteínas , Enzimas/química , Enzimas/genética , Biblioteca Gênica , Ensaios de Triagem em Larga Escala , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Engenharia de Proteínas/métodos , Relação Estrutura-Atividade , Biologia Sintética/métodos
2.
Angew Chem Int Ed Engl ; 47(46): 8782-93, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18850616

RESUMO

One often-cited weakness of biocatalysis is the lack of mirror-image enzymes for the formation of either enantiomer of a product in asymmetric synthesis. Enantiocomplementary enzymes exist as the solution to this problem in nature. These enzyme pairs, which catalyze the same reaction but favor opposite enantiomers, are not mirror-image molecules; however, they contain active sites that are functionally mirror images of one another. To create mirror-image active sites, nature can change the location of the binding site and/or the location of key catalytic groups. In this Minireview, X-ray crystal structures of enantiocomplementary enzymes are surveyed and classified into four groups according to how the mirror-image active sites are formed.


Assuntos
Enzimas/metabolismo , Sítios de Ligação , Domínio Catalítico , Enzimas/química , Enzimas/classificação , Dobramento de Proteína , Estereoisomerismo , Especificidade por Substrato
3.
J Am Chem Soc ; 127(18): 6536-7, 2005 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-15869266

RESUMO

Subtilisin Carlsberg-catalyzed hydrolysis of N-chloroacetyl p-toluenesulfinamide favored cleavage of the sulfinamide (S(O)-N) bond with a minor amount ( approximately 25%) of the expected carboxamide (C(O)-N) bond. The sulfinamide hydrolysis was enantioselective (E approximately 17) and yielded remaining starting material enriched in the R-enantiomer and achiral product, sulfinic acid and chloroacetamide, as confirmed by mass spectra and NMR. In contrast, the related subtilisin BPN' and E favored the carboxamide hydrolysis. Hydrolysis of the pseudo-symmetrical N-p-toluoyl p-toluenesulfinamide, which contains a sulfinamide and a carboxamide in similar steric and electronic environments, gave only sulfinamide cleavage (>10:1) for subtilisin Carlsberg, showing that sulfinamide cleavage is the preferred path even when a similar carboxamide is available.


Assuntos
Amidas/química , Amidas/metabolismo , Subtilisina/química , Subtilisina/metabolismo , Ácidos Sulfínicos/química , Ácidos Sulfínicos/metabolismo , Catálise , Hidrólise , Elastase Pancreática/química , Elastase Pancreática/metabolismo , Estereoisomerismo , Especificidade por Substrato , Sulfonamidas/química , Sulfonamidas/metabolismo
4.
Chembiochem ; 5(7): 980-7, 2004 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-15239056

RESUMO

cis,cis-(+/-)-6-(2,2-Dimethylpropanamido)spiro[4.4]nonan-1-ol, 1, a chiral auxiliary for Diels-Alder additions, was resolved by enzyme-catalyzed hydrolysis of the corresponding butyrate and acrylate esters. Subtilisin Carlsberg protease and bovine cholesterol esterase both showed high enantioselectivity in this process, but favored opposite enantiomers. Subtilisin Carlsberg favored esters of (1S,5S,6S)-1, while bovine cholesterol esterase favored esters of (1R,5R,6R)-1, consistent with the approximately mirror-image arrangement of the active sites of subtilisins and lipases/esterases. A gram-scale resolution of 1-acrylate with subtilisin Carlsberg yielded (1S,5S,6S)-1 (1.1 g, 46 % yield, 99 % ee) and (1R,5R,6R)-1-acrylate (1.3 g, 44 % yield, 99 % ee) although the reaction was slow. The high enantioselectivity combined with the conformational rigidity of the substrate made this an ideal example to identify the molecular basis of the enantioselectivity of subtilisin Carlsberg toward secondary alcohols. When modeled, the favored (1S,5S,6S) enantiomer adopted a catalytically productive conformation with two longer-than-expected hydrogen bonds, consistent with the slow reaction rate. The unfavored (1R,5R,6R) enantiomer encountered severe steric interactions with catalytically essential residues in the model. It either distorted the catalytic histidine position or encountered severe steric strain with Asn155, an oxyanion-stabilizing residue.


Assuntos
Acrilatos/química , Butiratos/química , Ésteres/química , Esterol Esterase/química , Subtilisinas/química , Acrilatos/metabolismo , Animais , Sítios de Ligação , Butiratos/metabolismo , Bovinos , Simulação por Computador , Ésteres/metabolismo , Histidina/química , Hidrólise , Conformação Proteica , Estereoisomerismo , Esterol Esterase/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Subtilisinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA