Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 195: 106351, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219379

RESUMO

Global warming is triggering significant shifts in temperate macroalgal communities worldwide, favoring small, warm-affinity species over large canopy-forming, cold-affinity species. The Cantabrian Sea, a region acutely impacted by climate change, is also witnessing this shift. This study delved into the impacts of increasing sea surface temperature on the subtidal macroalgal communities in the southeastern Bay of Biscay over the last four decades, by using data from the years 1982, 2007, 2014, and 2020. We found that temperature has shaped the community structure, with warm-affinity species steadily displacing their cold-affinity counterparts. Notably, new communities exhibited a profusion of smaller algal species, explaining the observed increased biodiversity within the area. In the last period investigated (2014-2020), we observed a partial recovery of the communities, coinciding with cooler sea surface temperatures. Shallow algal communities were more reactive to temperature variations than deeper communities, possibly associated with higher exposure to increased temperatures. Our study offered insights into the intricate relationship between the changes in ocean temperature and algal species in the southeastern Bay of Biscay, shedding light on the ongoing ecological shifts in this region.


Assuntos
Alga Marinha , Temperatura , Baías , Biodiversidade , Mudança Climática , Ecossistema
2.
Mar Environ Res ; 194: 106310, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38150788

RESUMO

Canopy-forming macroalgae are facing large declines due to climate change worldwide. The foundation species Gelidium corneum (Hudson) J.V. Lamouroux has shown a long-term decline in the Southeastern Bay of Biscay. We conducted an in situ experiment to investigate the combined effect of solar radiation and nutrient availability on the photosynthetic acclimation and growth of this macrophyte, and on the species richness and diversity of the assemblages that it forms. Photochemical stress in G. corneum was found to be greater at the end of the study, probably as a result of a prolonged exposure to high irradiance (PAR and UVR) and due to high temperatures during summer. We found an acclimation of G. corneum specimens to summer light and thermal conditions through dynamic/reversible photoinhibition and a decrease in photosynthetic efficiency. Nutrients may also have had a positive effect in dealing with the negative effects of these stressors. Under ongoing global climate change and projections for the future, further research will be needed to better understand the effects not only on canopy forming species but also on the whole community and thus on the functioning of the ecosystem.


Assuntos
Algas Comestíveis , Rodófitas , Alga Marinha , Ecossistema , Rodófitas/fisiologia , Alga Marinha/fisiologia , Fotossíntese
3.
Mar Environ Res ; 190: 106098, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37453282

RESUMO

Climate change is causing significant shifts in biological communities worldwide, including the degradation of marine communities. Previous research has predicted that southern Bay of Biscay canopy-forming subtidal macroalgal communities will shift into turf-forming Mediterranean-like communities by the end of the century. These predictions were based on a community-environment relationship model that used macroalgal abundance data and IPCC environmental projections. We have tested the short-term accuracy of that model by resampling the same communities and locations four years later and found the short-term predictions to be consistent with the observed communities. Changes in sea surface temperature were positively correlated with changes in the Community Temperature Index, suggesting that macroalgal communities had responded quickly to global warming. The changes over four years were significant, but canopy-forming macroalgae were more resilient in local sites with favourable temperature conditions. Our study demonstrated that updating predictive models with new data has the potential to yield reliable predictions and inform effective conservation strategies.


Assuntos
Baías , Alga Marinha , Alga Marinha/fisiologia , Mudança Climática , Aquecimento Global , Biota , Ecossistema
4.
Mar Environ Res ; 176: 105592, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35272245

RESUMO

The effect of climate change on species distribution has been the focus of much recent research, but the community-level approach remains poorly studied. Our investigation applies a present assemblage-environment relationship model for the first time to the predict changes in subtidal macroalgal assemblages in the northern Iberian Peninsula under the RCP 4.5 and RCP 8.5 climate scenarios by 2100. Water temperature is the most relevant factor in shaping assemblage distribution, whilst nutrient availability plays a secondary role. The results partially support our hypothesis that there may well be a potential meridionalisation of northern Iberian assemblages in the future. Under the most pessimistic scenario, the model projects that the north-western assemblages will remain distinct from the rest, whereas the central and eastern assemblages of the north coast of the Iberian Peninsula will come to resemble those of the Mediterranean region more closely than those of the northwest coast. This research may help predict how the biodiversity of the coastal ecosystem will respond to new environmental conditions. This is essential information for developing proper management and conservation policies.


Assuntos
Mudança Climática , Ecossistema , Biodiversidade , Região do Mediterrâneo , Temperatura
5.
Mar Pollut Bull ; 86(1-2): 197-209, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25084678

RESUMO

The successful protection and management of marine ecosystems depend on understanding the capability of biota for recovering after stressor mitigation actions are taken. Here we present long-term changes (1984-2012) in degraded subtidal assemblages following the implementation of the sewerage scheme for the metropolitan area of Bilbao (1 million inhabitants). Qualitative and quantitative species composition of disturbed vegetation shifted over time, making it more similar to that of the reference assemblages considered. Species density in the disturbed habitats increased, which is also a positive sign of recovery. However, eleven years after the clean-up was completed, canopy-forming macrophytes showed no signs of recovery. We argue that the ecological resilience of the ecosystem may have been eroded after a long-standing pollution perturbation and that underlying climate change could be influencing the recovery trajectory of the degraded assemblages. The implications of these conclusions for the implementation of European marine environmental legislation are discussed.


Assuntos
Mudança Climática , Ecossistema , Poluição Ambiental/prevenção & controle , Recuperação e Remediação Ambiental/métodos , Alga Marinha/crescimento & desenvolvimento , Análise de Variância , Poluição Ambiental/efeitos adversos , Espanha , Eliminação de Resíduos Líquidos/instrumentação
6.
Mar Environ Res ; 84: 31-42, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23253741

RESUMO

Understanding the effectiveness of pollution mitigation actions in terms of biological recovery is essential if the environmental protection goals of management policies are to be achieved. Few studies, however, have evaluated the restoration of seaweed assemblages following pollution abatement. This study aimed to investigate the response of macroalgal vegetation to the upgrade of a wastewater treatment plant using a "Beyond BACI" experimental design. Temporal differences in vegetation structure between the outfall and two control locations over a 10-year period were assessed. Improvement in sewage treatment was found to lead to increases in diversity, cover of morphologically complex algae and spatial heterogeneity. The multivariate composition of assemblages at the outfall location became more similar to that at the controls; however, their complete recovery may depend on factors other than pollution removal. Our findings also suggest that the extent of restoration and the time required to detect it are largely predetermined by the response variables we choose to assess recovery.


Assuntos
Ecossistema , Recuperação e Remediação Ambiental , Alga Marinha/fisiologia , Purificação da Água/normas , Biodiversidade , Esgotos , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA