Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biofilm ; 7: 100176, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38322579

RESUMO

A polymicrobial biofilm model of Komagataeibacter hansenii and Pseudomonas aeruginosa was developed to understand whether a pre-existing matrix affects the ability of another species to build a biofilm. P. aeruginosa was inoculated onto the preformed K. hansenii biofilm consisting of a cellulose matrix. P. aeruginosa PAO1 colonized and infiltrated the K. hansenii bacterial cellulose biofilm (BC), as indicated by the presence of cells at 19 µm depth in the translucent hydrogel matrix. Bacterial cell density increased along the imaged depth of the biofilm (17-19 µm). On day 5, the average bacterial count across sections was 67 ± 4 % P. aeruginosa PAO1 and 33 ± 6 % K. hansenii. Biophysical characterization of the biofilm indicated that colonization by P. aeruginosa modified the biophysical properties of the BC matrix, which inlcuded increased density, heterogeneity, degradation temperature and thermal stability, and reduced crystallinity, swelling ability and moisture content. This further indicates colonization of the biofilm by P. aeruginosa. While eDNA fibres - a key viscoelastic component of P. aeruginosa biofilm - were present on the surface of the co-cultured biofilm on day 1, their abundance decreased over time, and by day 5, no eDNA was observed, either on the surface or within the matrix. P. aeruginosa-colonized biofilm devoid of eDNA retained its mechanical properties. The observations demonstrate that a pre-existing biofilm scaffold of K. hansenii inhibits P. aeruginosa PAO1 eDNA production and suggest that eDNA production is a response by P. aeruginosa to the viscoelastic properties of its environment.

2.
Nat Commun ; 14(1): 7772, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012164

RESUMO

The extracellular matrix of bacterial biofilms consists of diverse components including polysaccharides, proteins and DNA. Extracellular RNA (eRNA) can also be present, contributing to the structural integrity of biofilms. However, technical difficulties related to the low stability of RNA make it difficult to understand the precise roles of eRNA in biofilms. Here, we show that eRNA associates with extracellular DNA (eDNA) to form matrix fibres in Pseudomonas aeruginosa biofilms, and the eRNA is enriched in certain bacterial RNA transcripts. Degradation of eRNA associated with eDNA led to a loss of eDNA fibres and biofilm viscoelasticity. Compared with planktonic and biofilm cells, the biofilm matrix was enriched in specific mRNA transcripts, including lasB (encoding elastase). The mRNA transcripts colocalised with eDNA fibres in the biofilm matrix, as shown by single molecule inexpensive FISH microscopy (smiFISH). The lasB mRNA was also observed in eDNA fibres in a clinical sputum sample positive for P. aeruginosa. Thus, our results indicate that the interaction of specific mRNAs with eDNA facilitates the formation of viscoelastic networks in the matrix of Pseudomonas aeruginosa biofilms.


Assuntos
Pseudomonas aeruginosa , RNA , Pseudomonas aeruginosa/metabolismo , RNA/metabolismo , Biofilmes , DNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo
3.
ISME J ; 17(6): 803-812, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36871068

RESUMO

Extracellular polymeric substances (EPS) are core biofilm components, yet how they mediate interactions within and contribute to the structuring of biofilms is largely unknown, particularly for non-culturable microbial communities that predominate in environmental habitats. To address this knowledge gap, we explored the role of EPS in an anaerobic ammonium oxidation (anammox) biofilm. An extracellular glycoprotein, BROSI_A1236, from an anammox bacterium, formed envelopes around the anammox cells, supporting its identification as a surface (S-) layer protein. However, the S-layer protein also appeared at the edge of the biofilm, in close proximity to the polysaccharide-coated filamentous Chloroflexi bacteria but distal to the anammox bacterial cells. The Chloroflexi bacteria assembled into a cross-linked network at the edge of the granules and surrounding anammox cell clusters, with the S-layer protein occupying the space around the Chloroflexi. The anammox S-layer protein was also abundant at junctions between Chloroflexi cells. Thus, the S-layer protein is likely transported through the matrix as an EPS and also acts as an adhesive to facilitate the assembly of filamentous Chloroflexi into a three-dimensional biofilm lattice. The spatial distribution of the S-layer protein within the mixed species biofilm suggests that it is a "public-good" EPS, which facilitates the assembly of other bacteria into a framework for the benefit of the biofilm community, and enables key syntrophic relationships, including anammox.


Assuntos
Compostos de Amônio , Chloroflexi , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Proteínas de Membrana , Oxidação Anaeróbia da Amônia , Reatores Biológicos , Anaerobiose , Oxirredução , Biofilmes , Bactérias/genética , Bactérias/metabolismo , Chloroflexi/metabolismo , Nitrogênio/metabolismo , Esgotos , Compostos de Amônio/metabolismo
5.
NPJ Biofilms Microbiomes ; 7(1): 27, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741996

RESUMO

Extracellular DNA, or eDNA, is recognised as a critical biofilm component; however, it is not understood how it forms networked matrix structures. Here, we isolate eDNA from static-culture Pseudomonas aeruginosa biofilms using ionic liquids to preserve its biophysical signatures of fluid viscoelasticity and the temperature dependency of DNA transitions. We describe a loss of eDNA network structure as resulting from a change in nucleic acid conformation, and propose that its ability to form viscoelastic structures is key to its role in building biofilm matrices. Solid-state analysis of isolated eDNA, as a proxy for eDNA structure in biofilms, reveals non-canonical Hoogsteen base pairs, triads or tetrads involving thymine or uracil, and guanine, suggesting that the eDNA forms G-quadruplex structures. These are less abundant in chromosomal DNA and disappear when eDNA undergoes conformation transition. We verify the occurrence of G-quadruplex structures in the extracellular matrix of intact static and flow-cell biofilms of P. aeruginosa, as displayed by the matrix to G-quadruplex-specific antibody binding, and validate the loss of G-quadruplex structures in vivo to occur coincident with the disappearance of eDNA fibres. Given their stability, understanding how extracellular G-quadruplex structures form will elucidate how P. aeruginosa eDNA builds viscoelastic networks, which are a foundational biofilm property.


Assuntos
Biofilmes/crescimento & desenvolvimento , DNA Ambiental/química , Matriz Extracelular de Substâncias Poliméricas/genética , Pseudomonas aeruginosa/fisiologia , DNA Bacteriano/química , Matriz Extracelular de Substâncias Poliméricas/química , Quadruplex G , Líquidos Iônicos/química , Espectroscopia de Ressonância Magnética , Pseudomonas aeruginosa/genética
6.
NPJ Biofilms Microbiomes ; 7(1): 11, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504802

RESUMO

Biofilms have several characteristics that ensure their survival in a range of adverse environmental conditions, including high cell numbers, close cell proximity to allow easy genetic exchange (e.g., for resistance genes), cell communication and protection through the production of an exopolysaccharide matrix. Together, these characteristics make it difficult to kill undesirable biofilms, despite the many studies aimed at improving the removal of biofilms. An elimination method that is safe, easy to deliver in physically complex environments and not prone to microbial resistance is highly desired. Cold atmospheric plasma, a lightning-like state generated from air or other gases with a high voltage can be used to make plasma-activated water (PAW) that contains many active species and radicals that have antimicrobial activity. Recent studies have shown the potential for PAW to be used for biofilm elimination without causing the bacteria to develop significant resistance. However, the precise mode of action is still the subject of debate. This review discusses the formation of PAW generated species and their impacts on biofilms. A focus is placed on the diffusion of reactive species into biofilms, the formation of gradients and the resulting interaction with the biofilm matrix and specific biofilm components. Such an understanding will provide significant benefits for tackling the ubiquitous problem of biofilm contamination in food, water and medical areas.


Assuntos
Biofilmes/efeitos dos fármacos , Gases em Plasma/farmacologia , Água/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Parede Celular/efeitos dos fármacos , Matriz Extracelular de Substâncias Poliméricas/efeitos dos fármacos , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Espécies Reativas de Nitrogênio/análise , Espécies Reativas de Nitrogênio/farmacologia , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/farmacologia , Água/química
7.
mBio ; 11(5)2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32900808

RESUMO

This study describes the first direct functional assignment of a highly abundant extracellular protein from a key environmental and biotechnological biofilm performing an anaerobic ammonium oxidation (anammox) process. Expression levels of Brosi_A1236, belonging to a class of proteins previously suggested to be cell surface associated, were in the top one percentile of all genes in the "Candidatus Brocadia sinica"-enriched biofilm. The Brosi_A1236 structure was computationally predicted to consist of immunoglobulin-like anti-parallel ß-strands, and circular dichroism conducted on the isolated surface protein indicated that ß-strands are the dominant higher-order structure. The isolated protein was stained positively by the ß-sheet-specific stain thioflavin T, along with cell surface- and matrix-associated regions of the biofilm. The surface protein has a large unstructured content, including two highly disordered domains at its C terminus. The disordered domains bound to the substratum and thereby facilitated the adhesion of negatively charged latex microspheres, which were used as a proxy for cells. The disordered domains and isolated whole surface protein also underwent liquid-liquid phase separation to form liquid droplets in suspension. Liquid droplets of disordered protein wet the surfaces of microspheres and bacterial cells and facilitated their coalescence. Furthermore, the surface layer protein formed gels as well as ordered crystalline structures. These observations suggest that biophysical remodeling through phase transitions promotes aggregation and biofilm formation.IMPORTANCE By employing biophysical and liquid-liquid phase separation concepts, this study revealed how a highly abundant extracellular protein enhances the key environmental and industrial bioprocess of anaerobic ammonium oxidation (anammox). Extracellular proteins of environmental biofilms are understudied and poorly annotated in public databases. Understanding the function of extracellular proteins is also increasingly important for improving bioprocesses and resource recovery. Here, protein functions were assessed based on theoretical predictions of intrinsically disordered domains, known to promote adhesion and liquid-liquid phase separation, and available surface layer protein properties. A model is thus proposed to explain how the protein promotes aggregation and biofilm formation by extracellular matrix remodeling and phase transitions. This work provides a strong foundation for functional investigations of extracellular proteins involved in biofilm development.


Assuntos
Compostos de Amônio/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Oxirredução , Anaerobiose , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos/genética , Proteínas de Bactérias/isolamento & purificação , Fenômenos Biofísicos
8.
Appl Microbiol Biotechnol ; 104(8): 3643-3654, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32095864

RESUMO

Anaerobic ammonium oxidation (anammox)-performing bacteria self-assemble into compact biofilms by expressing extracellular polymeric substances (EPS). Anammox EPS are poorly characterized, largely due to their low solubility in typical aqueous solvents. Pronase digestion achieved 19.5 ± 0.9 and 41.4 ± 1.4% (w/w) more solubilization of laboratory enriched Candidatus Brocadia sinica anammox granules than DNase and amylase, respectively. Nuclear magnetic resonance profiling of the granules confirmed proteins as dominant biopolymer within the EPS. Ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate and N,N-dimethylacetamide (EMIM-Ac/DMAc) mixture was applied to extract the major structural proteins. Further treatment by anion exchange chromatography isolated homologous serine (S)- and threonine (T)-rich proteins BROSI_A1236 and UZ01_01563, which were major components of the extracted proteins, and sequentially highly similar to putative anammox extracellular proteins KUSTD1514 and WP_070066018.1 of Ca. Kuenenia stuttgartiensis and Ca. Brocadia sapporoensis, respectively. Six monosaccharides (i.e., arabinose, xylose, rhamnose, fucose, galactose, and mannose) were enriched for BROSI_A1236 against all other major proteins. The sugars, however, contributed < 0.5% (w/w) of total granular biomass and were likely co-enriched as glycoprotein appendages. This study demonstrates that BROSI_A1236 is a major extracellular component of Ca. B. sinica anammox biofilms that is likely a common anammox extracellular polymer, and can be isolated from the matrix following ionic liquid extraction.


Assuntos
Compostos de Amônio/química , Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Biofilmes , Líquidos Iônicos/química , Polissacarídeos Bacterianos/química , Anaerobiose , Reatores Biológicos , Extração Líquido-Líquido/métodos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA