Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Biophys ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133791

RESUMO

Ca2+ plays a crucial role in cell signaling, cytosolic Ca2+ can change up to 10,000-fold in concentration due to the action of Ca2+-ATPases, including PMCA, SERCA and SCR. The regulation and balance of these enzymes are essential to maintain cytosolic Ca2+ homeostasis. Our laboratory has discovered a novel PMCA regulatory system, involving acetylated tubulin alone or in combination with membrane lipids. This regulation controls cytosolic Ca2+ levels and influences cellular properties such as erythrocyte rheology. This review summarizes the findings on the regulatory mechanism of PMCA activity by acetylated tubulin in combination with lipids. The combination of tubulin cytoskeleton and membrane lipids suggests a novel regulatory system for PMCA, which consequently affects cytosolic Ca2+ content, depending on cytoskeletal and plasma membrane dynamics. Understanding the interaction between acetylated tubulin, lipids and PMCA activity provides new insights into Ca2+ signaling and cell function. Further research may shed light on potential therapeutic targets for diseases related to Ca2+ dysregulation. This discovery contributes to a broader understanding of cellular processes and offers opportunities to develop innovative approaches to treat Ca2+-related disorders. By elucidating the complex regulatory mechanisms of Ca2+ homeostasis, we advance our understanding of cell biology and its implications for human health.

2.
J Physiol Biochem ; 79(3): 511-527, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36773113

RESUMO

In previous research, we observed that tubulin can be found in three fractions within erythrocytes, i.e., attached to the membrane, as a soluble fraction, or as part of a structure that can be sedimented by centrifugation. Given that its differential distribution within these fractions may alter several hemorheological properties, such as erythrocyte deformability, the present work studied how this distribution is in turn affected by Ca2+, another key player in the regulation of erythrocyte cytoskeleton stability. The effect of Ca2+ on some hemorheological parameters was also assessed. The results showed that when Ca2+ concentrations increased in the cell, whether by the addition of ionophore A23187, by specific plasma membrane Ca2 + _ATPase (PMCA) inhibition, or due to arterial hypertension, tubulin translocate to the membrane, erythrocyte deformability decreased, and phosphatidylserine exposure increased. Moreover, increased Ca2+ was associated with an inverse correlation in the distribution of tubulin and spectrin, another important cytoskeleton protein. Based on these findings, we propose the existence of a mechanism of action through which higher Ca2+ concentrations in erythrocytes trigger the migration of tubulin to the membrane, a phenomenon that results in alterations of rheological and molecular aspects of the membrane itself, as well as of the integrity of the cytoskeleton.


Assuntos
Eritrócitos , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Eritrócitos/metabolismo , Deformação Eritrocítica/fisiologia , Citoesqueleto/metabolismo , Membrana Celular/metabolismo , Cálcio/metabolismo
3.
J Biochem ; 169(6): 731-745, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-33576821

RESUMO

Plasma membrane tubulin is an endogenous regulator of P-ATPases and the unusual accumulation of tubulin in the erythrocyte membrane results in a partial inhibition of some their activities, causing hemorheological disorders like reduced cell deformability and osmotic resistance. These disorders are of particular interest in hypertension and diabetes, where the abnormal increase in membrane tubulin may be related to the disease development. Phosphatidylserine (PS) is more exposed on the membrane of diabetic erythrocytes than in healthy cells. In most cells, PS is transported from the exoplasmic to the cytoplasmic leaflet of the membrane by lipid flippases. Here, we report that PS is more exposed in erythrocytes from both hypertensive and diabetic patients than in healthy erythrocytes, which could be attributed to the inhibition of flippase activity by tubulin. This is supported by: (i) the translocation rate of a fluorescent PS analog in hypertensive and diabetic erythrocytes was slower than in healthy cells, (ii) the pharmacological variation of membrane tubulin in erythrocytes and K562 cells was linked to changes in PS translocation and (iii) the P-ATPase-dependent PS translocation in inside-out vesicles (IOVs) from human erythrocytes was inhibited by tubulin. These results suggest that tubulin regulates flippase activity and hence, the membrane phospholipid asymmetry.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Diabetes Mellitus/patologia , Eritrócitos/metabolismo , Hipertensão/patologia , Fosfatidilserinas/metabolismo , Tubulina (Proteína)/metabolismo , Adenosina Trifosfatases/metabolismo , Adulto , Estudos de Casos e Controles , Diabetes Mellitus/metabolismo , Feminino , Humanos , Hipertensão/metabolismo , Masculino , Pessoa de Meia-Idade
4.
Int J Biochem Cell Biol ; 91(Pt A): 29-36, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28855121

RESUMO

We investigated the properties of tubulin present in the sedimentable fraction ("Sed-tub") of human erythrocytes, and tracked the location and organization of tubulin in various types of cells during the process of hematopoietic/erythroid differentiation. Sed-tub was sensitive to taxol/nocodazole (drugs that modify microtubule assembly/disassembly), but was organized as part of a protein network rather than in typical microtubule form. This network had a non-uniform "connected-ring" structure, with tubulin localized in the connection areas and associated with other proteins. When tubulin was eliminated from Sed-tub fraction, this connected-ring structure disappeared. Spectrin, a major protein component in Sed-tub fraction, formed a complex with tubulin. During hematopoietic differentiation, tubulin shifts from typical microtubule structure (in pro-erythroblasts) to a disorganized structure (in later stages), and is retained in reticulocytes following enucleation. Thus, tubulin is not completely lost when erythrocytes mature; it continues to play a structural role in the Sed-tub fraction.


Assuntos
Eritrócitos/citologia , Eritrócitos/metabolismo , Hematopoese , Tubulina (Proteína)/metabolismo , Adulto , Sedimentação Sanguínea/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Feminino , Hematopoese/efeitos dos fármacos , Humanos , Masculino , Nocodazol/farmacologia , Paclitaxel/farmacologia , Espectrina/metabolismo , Tubulina (Proteína)/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA