RESUMO
BACKGROUND: Inhibitors are formed that reduce the fermentation performance of fermenting yeast during the pretreatment process of lignocellulosic biomass. An exometabolomics approach was applied to systematically identify inhibitors in lignocellulosic biomass hydrolysates. RESULTS: We studied the composition and fermentability of 24 different biomass hydrolysates. To create diversity, the 24 hydrolysates were prepared from six different biomass types, namely sugar cane bagasse, corn stover, wheat straw, barley straw, willow wood chips and oak sawdust, and with four different pretreatment methods, i.e. dilute acid, mild alkaline, alkaline/peracetic acid and concentrated acid. Their composition and that of fermentation samples generated with these hydrolysates were analyzed with two GC-MS methods. Either ethyl acetate extraction or ethyl chloroformate derivatization was used before conducting GC-MS to prevent sugars are overloaded in the chromatograms, which obscure the detection of less abundant compounds. Using multivariate PLS-2CV and nPLS-2CV data analysis models, potential inhibitors were identified through establishing relationship between fermentability and composition of the hydrolysates. These identified compounds were tested for their effects on the growth of the model yeast, Saccharomyces. cerevisiae CEN.PK 113-7D, confirming that the majority of the identified compounds were indeed inhibitors. CONCLUSION: Inhibitory compounds in lignocellulosic biomass hydrolysates were successfully identified using a non-targeted systematic approach: metabolomics. The identified inhibitors include both known ones, such as furfural, HMF and vanillin, and novel inhibitors, namely sorbic acid and phenylacetaldehyde.
Assuntos
Biomassa , Fermentação , Lignina/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Celulose/química , Flavonas/química , Furaldeído/química , Hordeum/química , Metabolômica , Modelos Estatísticos , Caules de Planta/química , Salix/química , Triticum/química , Madeira/química , Zea mays/químicaRESUMO
One of the main challenges in food contact materials research is to prove that the presence of non-intentionally added substances (NIAS) is not a safety issue. Migration extracts may contain many unknown substances present at low concentrations. It is difficult and time-consuming to identify all these potential NIAS and concurrently to assess their health risk upon exposure, whereas the health relevance at low exposure levels might not even be an issue. This paper describes a scientifically based, but pragmatic safety assessment approach for unknown substances present at low exposure levels in food contact matrices. This complex mixture safety assessment strategy (CoMSAS) enables one to distinguish toxicologically relevant from toxicologically less relevant substances, when related to their respective levels of exposure, and allows one to focus on the substances of potential health concern. In particular, substances for which exposure will be below certain thresholds may be considered not of health relevance in case specific classes of substances are excluded. This can reduce the amount of work needed for identification, characterisation and evaluation of unknown substances at low concentration. The CoMSAS approach is presented in this paper using a safety assessment of unknown NIAS that may migrate from three carton samples.
Assuntos
Contaminação de Alimentos/análise , Embalagem de Alimentos , Análise de Perigos e Pontos Críticos de Controle/métodos , Alérgenos/análise , Alérgenos/toxicidade , Misturas Complexas/análise , Misturas Complexas/toxicidade , Contaminação de Alimentos/prevenção & controle , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Mutagênicos/análise , Mutagênicos/toxicidade , Nível de Efeito Adverso não Observado , Papel , Plásticos/análise , Plásticos/toxicidadeRESUMO
Experimental Autoimmune Encephalomyelitis (EAE) is the most commonly used animal model for Multiple Sclerosis (MScl). CSF metabolomics in an acute EAE rat model was investigated using targetted LC-MS and GC-MS. Acute EAE in Lewis rats was induced by co-injection of Myelin Basic Protein with Complete Freund's Adjuvant. CSF samples were collected at two time points: 10 days after inoculation, which was during the onset of the disease, and 14 days after inoculation, which was during the peak of the disease. The obtained metabolite profiles from the two time points of EAE development show profound differences between onset and the peak of the disease, suggesting significant changes in CNS metabolism over the course of MBP-induced neuroinflammation. Around the onset of EAE the metabolome profile shows significant decreases in arginine, alanine and branched amino acid levels, relative to controls. At the peak of the disease, significant increases in concentrations of multiple metabolites are observed, including glutamine, O-phosphoethanolamine, branched-chain amino acids and putrescine. Observed changes in metabolite levels suggest profound changes in CNS metabolism over the course of EAE. Affected pathways include nitric oxide synthesis, altered energy metabolism, polyamine synthesis and levels of endogenous antioxidants. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-011-0306-3) contains supplementary material, which is available to authorized users.
RESUMO
BACKGROUND: Because cerebrospinal fluid (CSF) is in close contact with diseased areas in neurological disorders, it is an important source of material in the search for molecular biomarkers. However, sample handling for CSF collected from patients in a clinical setting might not always be adequate for use in proteomics and metabolomics studies. METHODS: We left CSF for 0, 30, and 120 min at room temperature immediately after sample collection and centrifugation/removal of cells. At 2 laboratories CSF proteomes were subjected to tryptic digestion and analyzed by use of nano-liquid chromatography (LC) Orbitrap mass spectrometry (MS) and chipLC quadrupole TOF-MS. Metabolome analysis was performed at 3 laboratories by NMR, GC-MS, and LC-MS. Targeted analyses of cystatin C and albumin were performed by LC-tandem MS in the selected reaction monitoring mode. RESULTS: We did not find significant changes in the measured proteome and metabolome of CSF stored at room temperature after centrifugation, except for 2 peptides and 1 metabolite, 2,3,4-trihydroxybutanoic (threonic) acid, of 5780 identified peptides and 93 identified metabolites. A sensitive protein stability marker, cystatin C, was not affected. CONCLUSIONS: The measured proteome and metabolome of centrifuged human CSF is stable at room temperature for up to 2 hours. We cannot exclude, however, that changes undetectable with our current methodology, such as denaturation or proteolysis, might occur because of sample handling conditions. The stability we observed gives laboratory personnel at the collection site sufficient time to aliquot samples before freezing and storage at -80 °C.
Assuntos
Metaboloma , Proteoma/metabolismo , Manejo de Espécimes , Líquido Cefalorraquidiano , Cromatografia Gasosa , Cromatografia Líquida , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas/métodos , Fatores de TempoRESUMO
The analysis of cerebrospinal fluid (CSF) is used in biomarker discovery studies for various neurodegenerative central nervous system (CNS) disorders. However, little is known about variation of CSF proteins and metabolites between patients without neurological disorders. A baseline for a large number of CSF compounds appears to be lacking. To analyze the variation in CSF protein and metabolite abundances in a number of well-defined individual samples of patients undergoing routine, non-neurological surgical procedures, we determined the variation of various proteins and metabolites by multiple analytical platforms. A total of 126 common proteins were assessed for biological variations between individuals by ESI-Orbitrap. A large spread in inter-individual variation was observed (relative standard deviations [RSDs] ranged from 18 to 148%) for proteins with both high abundance and low abundance. Technical variation was between 15 and 30% for all 126 proteins. Metabolomics analysis was performed by means of GC-MS and nuclear magnetic resonance (NMR) imaging and amino acids were specifically analyzed by LC-MS/MS, resulting in the detection of more than 100 metabolites. The variation in the metabolome appears to be much more limited compared with the proteome: the observed RSDs ranged from 12 to 70%. Technical variation was less than 20% for almost all metabolites. Consequently, an understanding of the biological variation of proteins and metabolites in CSF of neurologically normal individuals appears to be essential for reliable interpretation of biomarker discovery studies for CNS disorders because such results may be influenced by natural inter-individual variations. Therefore, proteins and metabolites with high variation between individuals ought to be assessed with caution as candidate biomarkers because at least part of the difference observed between the diseased individuals and the controls will not be caused by the disease, but rather by the natural biological variation between individuals.
Assuntos
Líquido Cefalorraquidiano/metabolismo , Metabolômica , Proteômica , Estudos de Casos e Controles , Cromatografia Líquida , Humanos , Espectroscopia de Ressonância Magnética , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em TandemRESUMO
Metabolomics is an emerging, powerful, functional genomics technology that involves the comparative non-targeted analysis of the complete set of metabolites in an organism. We have set-up a robust quantitative metabolomics platform that allows the analysis of 'snapshot' metabolomes. In this study, we have applied this platform for the comprehensive analysis of the metabolite composition of Pseudomonas putida S12 grown on four different carbon sources, i.e. fructose, glucose, gluconate and succinate. This paper focuses on the microbial aspects of analyzing comprehensive metabolomes, and demonstrates that metabolomes can be analyzed reliably. The technical (i.e. sample work-up and analytical) reproducibility was on average 10%, while the biological reproducibility was approximately 40%. Moreover, the energy charge values of the microbial samples generated were determined, and indicated that no biotic or abiotic changes had occurred during sample work-up and analysis. In general, the metabolites present and their concentrations were very similar after growth on the different carbon sources. However, specific metabolites showed large differences in concentration, especially the intermediates involved in the degradation of the carbon sources studied. Principal component discriminant analysis was applied to identify metabolites that are specific for, i.e. not necessarily the metabolites that show those largest differences in concentration, cells grown on either of these four carbon sources. For selected enzymatic reactions, i.e. the glucose-6-phosphate isomerase, triosephosphate isomerase and phosphoglyceromutase reactions, the apparent equilibrium constants (K(app)) were calculated. In several instances a carbon source-dependent deviation between the apparent equilibrium constant (K(app)) and the thermodynamic equilibrium constant (K(eq)) was observed, hinting towards a potential point of metabolic regulation or towards bottlenecks in biosynthesis routes. For glucose-6-phosphate isomerase and phosphoglyceromutase, the K(app) was larger than K(eq), and the results suggested that the specific enzymatic activities of these two enzymes were too low to reach the thermodynamic equilibrium in growing cells. In contrast, with triosephosphate isomerase the K(app) was smaller than K(eq), and the results suggested that this enzyme is kinetically controlled.
Assuntos
Carbono/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genômica , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Metabolismo Energético , Metabolismo , Reprodutibilidade dos TestesRESUMO
Achieving metabolome data with satisfactory coverage is a formidable challenge in metabolomics because metabolites are a chemically highly diverse group of compounds. Here we present a strategy for the development of an advanced analytical platform that allows the comprehensive analysis of microbial metabolomes. Our approach started with in silico metabolome information from three microorganisms-Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae-and resulted in a list of 905 different metabolites. Subsequently, these metabolites were classified based on their physicochemical properties, followed by the development of complementary gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry methods, each of which analyzes different metabolite classes. This metabolomics platform, consisting of six different analytical methods, was applied for the analysis of the metabolites for which commercial standards could be purchased (399 compounds). Of these 399 metabolites, 380 could be analyzed with the platform. To demonstrate the potential of this metabolomics platform, we report on its application to the analysis of the metabolome composition of mid-logarithmic E. coli cells grown on a mineral salts medium using glucose as the carbon source. Of the 431 peaks detected, 235 (=176 unique metabolites) could be identified. These include 61 metabolites that were not previously identified or annotated in existing E. coli databases.
Assuntos
Bacillus subtilis/metabolismo , Escherichia coli/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatografia Líquida , Bases de Dados Factuais , Cromatografia Gasosa-Espectrometria de MassasRESUMO
An analytical method was set up suitable for the analysis of microbial metabolomes, consisting of an oximation and silylation derivatization reaction and subsequent analysis by gas chromatography coupled to mass spectrometry. Microbial matrixes contain many compounds that potentially interfere with either the derivatization procedure or analysis, such as high concentrations of salts, complex media or buffer components, or extremely high substrate and product concentrations. The developed method was extensively validated using different microorganisms, i.e., Bacillus subtilis, Propionibacterium freudenreichii, and Escherichia coli. Many metabolite classes could be analyzed with the method: alcohols, aldehydes, amino acids, amines, fatty acids, (phospho-) organic acids, sugars, sugar acids, (acyl-) sugar amines, sugar phosphate, purines, pyrimidines, and aromatic compounds. The derivatization reaction proved to be efficient (>50% transferred to derivatized form) and repeatable (relative standard deviations <10%). Linearity for most metabolites was satisfactory with regression coefficients better than 0.996. Quantification limits were 40-500 pg on-column or 0.1-0.7 mmol/g of microbial cells (dry weight). Generally, intrabatch precision (repeatability) and interbatch precision (reproducibility) for the analysis of metabolites in cell extracts was better than 10 and 15%, respectively. Notwithstanding the nontargeted character of the method and complex microbial matrix, analytical performance for most metabolites fit the requirements for target analysis in bioanalysis. The suitability of the method was demonstrated by analysis of E. coli samples harvested at different growth phases.