RESUMO
AIMS: Specific fibroblast markers and in-depth heterogeneity analysis are currently lacking, hindering functional studies in cardiovascular diseases (CVDs). Here, we established cell-type markers and heterogeneity in murine and human arteries and studied the adventitial fibroblast response to CVD and its risk factors hypercholesterolaemia and ageing. METHODS AND RESULTS: Murine aorta single-cell RNA-sequencing analysis of adventitial mesenchymal cells identified fibroblast-specific markers. Immunohistochemistry and flow cytometry validated platelet-derived growth factor receptor alpha (PDGFRA) and dipeptidase 1 (DPEP1) across human and murine aorta, carotid, and femoral arteries, whereas traditional markers such as the cluster of differentiation (CD)90 and vimentin also marked transgelin+ vascular smooth muscle cells. Next, pseudotime analysis showed multiple fibroblast clusters differentiating along trajectories. Three trajectories, marked by CD55 (Cd55+), Cxcl chemokine 14 (Cxcl14+), and lysyl oxidase (Lox+), were reproduced in an independent RNA-seq dataset. Gene ontology (GO) analysis showed divergent functional profiles of the three trajectories, related to vascular development, antigen presentation, and/or collagen fibril organization, respectively. Trajectory-specific genes included significantly more genes with known genome-wide associations (GWAS) to CVD than expected by chance, implying a role in CVD. Indeed, differential regulation of fibroblast clusters by CVD risk factors was shown in the adventitia of aged C57BL/6J mice, and mildly hypercholesterolaemic LDLR KO mice on chow by flow cytometry. The expansion of collagen-related CXCL14+ and LOX+ fibroblasts in aged and hypercholesterolaemic aortic adventitia, respectively, coincided with increased adventitial collagen. Immunohistochemistry, bulk, and single-cell transcriptomics of human carotid and aorta specimens emphasized translational value as CD55+, CXCL14+ and LOX+ fibroblasts were observed in healthy and atherosclerotic specimens. Also, trajectory-specific gene sets are differentially correlated with human atherosclerotic plaque traits. CONCLUSION: We provide two adventitial fibroblast-specific markers, PDGFRA and DPEP1, and demonstrate fibroblast heterogeneity in health and CVD in humans and mice. Biological relevance is evident from the regulation of fibroblast clusters by age and hypercholesterolaemia in vivo, associations with human atherosclerotic plaque traits, and enrichment of genes with a GWAS for CVD.
Assuntos
Aterosclerose , Hipercolesterolemia , Placa Aterosclerótica , Humanos , Camundongos , Animais , Idoso , Placa Aterosclerótica/metabolismo , Hipercolesterolemia/metabolismo , Transcriptoma , Camundongos Endogâmicos C57BL , Aterosclerose/metabolismo , Colágeno/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Envelhecimento/genética , Fibroblastos/metabolismo , Colesterol/metabolismoRESUMO
BACKGROUND AND PURPOSE: Superoxide anions can reduce the bioavailability and actions of endothelium-derived NO. In human resistance-sized arteries, endothelium-dependent vasodilatation can be mediated by H2 O2 instead of NO. Here, we tested the hypothesis that in resistance arteries from patients with cardiovascular disease, endothelium-dependent vasodilatation is mediated by a reactive oxygen species and not impaired by oxidative stress. EXPERIMENTAL APPROACH: Small arteries were isolated from biopsies of the parietal pericardium of patients undergoing elective cardiothoracic surgery and were studied using immunohistochemical and organ chamber techniques. KEY RESULTS: NO synthases 1, 2 and 3, superoxide dismutase 1 and catalase proteins were observed in the microvascular wall. Relaxing responses to bradykinin were endothelium dependent. During submaximal depolarization-induced contraction, bradykinin-mediated relaxations were inhibited by inhibitors of NO synthases (NOS) and soluble guanylyl cyclase (sGC) but not by scavengers of NO or HNO, inhibitors of cyclooxygenases, neuronal NO synthase, superoxide dismutase or catalase, or by exogenous catalase. During contraction stimulated by endothelin-1, these relaxations were not reduced by any of these interventions except DETCA, which caused a small reduction. CONCLUSION AND IMPLICATIONS: In resistance arteries from patients with cardiovascular disease, endothelium-dependent relaxations seem not to be mediated by NO, HNO or H2 O2 , although NOS and sGC can be involved. These vasodilator responses continue during excessive oxidative stress.