Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Air Waste Manag Assoc ; 74(2): 72-99, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37955449

RESUMO

Since the outbreak of COVID-19 few years ago, the increasing of the number of medical waste has become a huge issue because of their harmful impact to environment. A major concern associated to the limitation of technologies for dealing with medical waste, especially conventional technologies, are overcapacities since pandemic occurs. Moreover, the outbreak of new viruses from post COVID-19 should become a serious attention to be prevented not only environmental issues but also the spreading of viruses to new pandemic near the future. The high possibility of an outbreak of new viruses and mutation near the future should be prevented based on the experience associated with the SARS-CoV-2 virus in the last 3 yr. This review presented information and strategies for handling medical waste during the outbreak of COVID-19 and post-COVID-19, and also information on the current issues related to technologies, such as incineration, pyrolysis/gasification, autoclaves and microwave treatment for the dealing with high numbers of medical waste in COVID-19 to prevent the transmission of SARS-CoV-2 virus, their advantages and disadvantages. Plasma technology can be considered to be implemented as an alternative technology to deal with medical waste since incinerator is usually over capacities during the pandemic situation. Proper treatment of specific medical waste in pandemics, namely face masks, vaccine vials, syringes, and dead bodies, are necessary because those medical wastes are mediums for transmission of the SARS-CoV-2 virus. Furthermore, emission controls from incinerator and plasma are necessary to be implemented to reduce the high concentration of CO2, NOx, and VOCs during the treatment. Finally, future strategies of medical waste treatment in the perspective of potential outbreak pandemic from new mutation viruses are discussed in this review paper.Implications: Journal of the air and waste management association may consider our review paper to be published. In this review, we give important information related to the technologies, managements and strategies for handling the medical waste and control the transmission of SARS-CoV-2 virus, starting from proper technology to control the high number of medical waste, their pollutants and many strategies for controlling the spreading of SARS-CoV-2 virus. Moreover, this review also describes some strategies associated with control the transmission not only the SARS-CoV-2 virus but also the outbreak of new viruses near the future.


Assuntos
COVID-19 , Resíduos de Serviços de Saúde , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Pandemias/prevenção & controle , Tecnologia
2.
Polymers (Basel) ; 12(11)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182780

RESUMO

Water scarcity is still a pressing issue in many regions. The application of membrane technology through water desalination to convert brackish to potable water is a promising technology to solve this issue. This study compared the performance of templated TEOS-P123 and ES40-P123 hybrid membranes for brackish water desalination. The membranes were prepared by the sol-gel method by employing tetraethyl orthosilicate (TEOS) for the carbon-templated silica (soft template) and ethyl silicate (ES40) for the hybrid organo-silica. Both sols were templated by adding 35 wt.% of pluronic triblock copolymer (P123) as the carbon source. The silica-templated sols were dip-coated onto alumina support (four layers) and were calcined by using the RTP (rapid thermal processing) method. The prepared membranes were tested using pervaporation set up at room temperature (~25 °C) using brackish water (0.3 and 1 wt.%) as the feed. It was found that the hybrid membrane exhibited the highest specific surface area (6.72 m2·g-1), pore size (3.67 nm), and pore volume (0.45 cm3·g-1). The hybrid ES40-P123 was twice thicker (2 µm) than TEOS-P123-templated membranes (1 µm). Lastly, the hybrid ES40-P123 displayed highest water flux of 6.2 kg·m-2·h-1. Both membranes showed excellent robustness and salt rejections of >99%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA