Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(47): 27496-27524, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33283826

RESUMO

We present first principle based beyond Born-Oppenheimer (BBO) theory and its applications on various models as well as realistic spectroscopic and scattering processes, where the Jahn-Teller (JT) theory is brought in conjunction with the BBO approach on the phase transition of lanthanide complexes. Over one and half decades, our development of BBO theory is demonstrated with ab initio calculations on representative molecules of spectroscopic interest (NO2 radical, Na3 and K3 clusters, NO3 radical, C6H6+ and 1,3,5-C6H3F3+ radical cations) as well as triatomic reactive scattering processes (H+ + H2 and F + H2). Such an approach exhibits the effect of JT, Renner-Teller (RT) and pseudo Jahn-Teller (PJT) type of interactions. While implementing the BBO theory, we generate highly accurate diabatic potential energy surfaces (PESs) to carry out quantum dynamics calculation and find excellent agreement with experimental photoelectron spectra of spectroscopic systems and cross-sections/rate constants of scattering processes. On the other hand, such electron-nuclear couplings incorporated through JT theory play a crucial role in dictating higher energy satellite transitions in the dielectric function spectra of the LaMnO3 complex. Overall, this article thoroughly sketches the current perspective of the BBO approach and its connection with JT theory with various applications on physical and chemical processes.

2.
J Chem Phys ; 153(17): 174301, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33167635

RESUMO

First principles based beyond Born-Oppenheimer theory has been implemented on the F + H2 system for constructing multistate global diabatic Potential Energy Surfaces (PESs) through the incorporation of Nonadiabatic Coupling Terms (NACTs) explicitly. The spin-orbit (SO) coupling effect on the collision process of the F + H2 reaction has been included as a perturbation to the non-relativistic electronic Hamiltonian. Adiabatic PESs and NACTs for the lowest three electronic states (12A', 22A', and 12A″) are determined in hyperspherical coordinates as functions of hyperangles for a grid of fixed values of the hyperradius. Jahn-Teller (JT) type conical intersections between the two A' states translate along C2v and linear geometries in F + H2. In addition, A' and A″ states undergo Renner-Teller (RT) interaction at collinear configurations of this system. Both JT and RT couplings are validated by integrating NACTs along properly chosen contours. Subsequently, we have solved adiabatic-to-diabatic transformation (ADT) equations to evaluate the ADT angles for constructing the diabatic potential matrix of F + H2, including the SO coupling terms. The newly calculated diabatic PESs are found to be smooth, single-valued, continuous, and symmetric and can be invoked for performing accurate scattering calculations on the F + H2 system.

3.
J Chem Theory Comput ; 16(3): 1666-1680, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32003993

RESUMO

The major bottleneck of first principle based beyond Born-Oppenheimer (BBO) treatment originates from large number and complicated expressions of adiabatic to diabatic transformation (ADT) equations for higher dimensional sub-Hilbert spaces. In order to overcome such shortcoming, we develop a generalized algorithm, "ADT" to generate the nonadiabatic equations through symbolic manipulation and to construct highly accurate diabatic surfaces for molecular processes involving excited electronic states. It is noteworthy to mention that the nonadiabatic coupling terms (NACTs) often become singular (removable) at degenerate point(s) or along a seam in the nuclear configuration space (CS) and thereby, a unitary transformation is required to convert the kinetically coupled (adiabatic) Hamiltonian to a potentially (diabatic) one to avoid such singularity(ies). The "ADT" program can be efficiently used to (a) formulate analytic functional forms of differential equations for ADT angles and diabatic potential energy matrix and (b) solve the set of coupled differential equations numerically to evaluate ADT angles, residue due to singularity(ies), ADT matrices, and finally, diabatic potential energy surfaces (PESs). For the numerical case, user can directly provide ab initio data (adiabatic PESs and NACTs) as input files to this software or can generate those input files through in-built python codes interfacing MOLPRO followed by ADT calculation. In order to establish the workability of our program package, we selectively choose six realistic molecular species, namely, NO2 radical, H3+, F + H2, NO3 radical, C6H6+ radical cation, and 1,3,5-C6H3F3+ radical cation, where two, three, five and six electronic states exhibit profound nonadiabatic interactions and are employed to compute diabatic PESs by using ab initio calculated adiabatic PESs and NACTs. The "ADT" package released under the GNU General Public License v3.0 (GPLv3) is available at https://github.com/AdhikariLAB/ADT-Program and also as the Supporting Information of this article.

4.
J Chem Phys ; 150(6): 064308, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769968

RESUMO

In order to circumvent numerical inaccuracy originating from the singularity of nonadiabatic coupling terms (NACTs), we need to perform kinetically coupled adiabatic to potentially coupled diabatic transformation of the nuclear Schrödinger Equation. Such a transformation is difficult to achieve for higher dimensional sub-Hilbert spaces due to inherent complicacy of adiabatic to diabatic transformation (ADT) equations. Nevertheless, detailed expressions of ADT equations are formulated for six coupled electronic states for the first time and their validity is extensively examined for a well-known radical cation, namely, 1,3,5-C6H3F3 + (TFBZ+). While implementing this formulation, we compute ab initio adiabatic potential energy surfaces (PESs) and NACTs within the low-lying six electronic states (X̃2E'', Ã2A2 '', B̃2E', and C̃2A2 '), where several types of nonadiabatic interactions, like Jahn-Teller conical intersections (CI), accidental CIs, accidental seams (series of degenerate points), and pseudo Jahn-Teller interactions can be observed over the Franck-Condon region of nuclear configuration space. Those interactions are depicted by exploring degenerate components of C-C asymmetric stretching, C-C symmetric stretching, and C-C-C scissoring motion (Q9x, Q9y, Q10x, Q10y, Q12x, and Q12y) to compute complete active space self-consistent field level adiabatic PESs and NACTs as implemented in the MOLPRO quantum chemistry package. Subsequently, we perform the ADT using our newly devised fifteen (15) ADT equations to locate the position of CIs, verify the quantization of NACTs, and to construct highly accurate diabatic PESs.

5.
ACS Omega ; 3(10): 12465-12475, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457977

RESUMO

We carry out detailed investigation for topological effects of two molecular systems, NO3 radical and C6H6 + (Bz+) radical cation, where the dressed adiabatic, dressed diabatic, and adiabatic-via-dressed diabatic potential energy curves (PECs) are generated employing ab initio calculated adiabatic and diabatic potential energy surfaces (PESs). We have implemented beyond Born-Oppenheimer (BBO) theory for constructing smooth, single-valued, and continuous diabatic PESs for five coupled electronic states [J. Phys. Chem. A 2017, 121, 6314-6326]. In the case of NO3 radical, the nonadiabatic coupling terms (NACTs) among the low-lying five electronic states, namely, X̃ 2A2 ' (12B2), A~ 2E″ (12A2 and 12B1), and B~ 2E' (12A1 and 22B2), bear the signature of Jahn-Teller (JT) interactions, pseudo JT (PJT) interactions, and accidental conical intersections (CIs). Similarly, Bz+ radical cation also exhibits JT, PJT, and accidental CIs in the interested domain of nuclear configuration space. In order to generate dressed PECs, two components of degenerate in-plane asymmetric stretching modes are selectively chosen for both the molecular species (Q 3x -Q 3y pair for NO3 radical and Q 16x -Q 16y pair for Bz+ radical cation). The JT coupling between the electronic states is essentially originated through the asymmetric stretching normal mode pair, where the coupling elements exhibit symmetric and nonlinear functional behavior along Q 3x and Q 16x normal modes.

6.
J Chem Phys ; 147(7): 074105, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28830157

RESUMO

The workability of beyond Born-Oppenheimer theory to construct diabatic potential energy surfaces (PESs) of a charge transfer atom-diatom collision process has been explored by performing scattering calculations to extract accurate integral cross sections (ICSs) and rate constants for comparison with most recent experimental quantities. We calculate non-adiabatic coupling terms among the lowest three singlet states of H3+ system (11A', 21A', and 31A') using MRCI level of calculation and solve the adiabatic-diabatic transformation equation to formulate the diabatic Hamiltonian matrix of the same process [S. Mukherjee et al., J. Chem. Phys. 141, 204306 (2014)] for the entire region of nuclear configuration space. The nonadiabatic effects in the D+ + H2 reaction has been studied by implementing the coupled 3D time-dependent wave packet formalism in hyperspherical coordinates [S. Adhikari and A. J. C. Varandas, Comput. Phys. Commun. 184, 270 (2013)] with zero and non-zero total angular momentum (J) on such newly constructed accurate (ab initio) diabatic PESs of H3+. We have depicted the convergence profiles of reaction probabilities for the reactive non-charge transfer, non-reactive charge transfer, and reactive charge transfer processes for different collisional energies with respect to the helicity (K) and total angular momentum (J) quantum numbers. Finally, total and state-to-state ICSs are calculated as a function of collision energy for the initial rovibrational state (v = 0, j = 0) of the H2 molecule, and consequently, those quantities are compared with previous theoretical and experimental results.

7.
J Phys Chem A ; 121(33): 6314-6326, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28735536

RESUMO

We present explicit form of Adiabatic to Diabatic Transformation (ADT) equations and expressions of non-adiabatic coupling terms (NACTs) for a coupled five-state electronic manifold in terms of ADT angles between electronic wave functions. ADT matrices eliminate the numerical instability arising from singularity of NACTs and transform the adiabatic Schrödinger equation to its diabatic form. Two real molecular systems NO3 and C6H6+ (Bz+) are selectively chosen for the demonstration of workability of those equations. We examine the NACTs among the lowest five electronic states of the NO3 radical [X̃2A2' (12B2), Ã2E″ (12A2 and 12B1) and B̃2E' (12A1 and 22B2)], in which all types of non-adiabatic interactions, that is, Jahn-Teller (JT) interactions, Pseudo Jahn-Teller (PJT) interactions, and accidental conical intersections (CIs) are present. On the other hand, lowest five electronic states of Bz+ [X̃2E1g (12B3g and 12B2g), B̃2E2g (12Ag and 12B1g), and C̃2A2u (12B1u)] depict similar kind of complex feature of non-adiabatic effects. For NO3 radical, the two components of degenerate in-plane asymmetric stretching mode are taken as a plane of nuclear configuration space (CS), whereas in case of Bz+, two pairs are chosen: One is the pair of components of degenerate in-plane asymmetric stretching mode, and the other one is constituted with one of the components each from out-of-plane degenerate bend and in-plane degenerate asymmetric stretching modes. We calculate ab initio adiabatic potential energy surfaces (PESs) and NACTs among the lowest five electronic states at the CASSCF level using MOLPRO quantum chemistry package. Subsequently, the ADT is performed using those newly developed equations to validate the positions of the CIs, evaluate the ADT angles and construct smooth, symmetric, and continuous diabatic PESs for both the molecular systems.

8.
J Chem Phys ; 143(24): 244307, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26723671

RESUMO

A thorough investigation has been performed for electronic structure, topological effect, and nuclear dynamics of NO2 molecule, where the adiabatic potential energy surfaces (PESs), conical intersections between the ground (X(2)A1) and the first excited state (A(2)B2), and the corresponding non-adiabatic coupling terms between those states are recalculated [Chem. Phys. 416, 11 (2013)] to achieve enough accuracy in dynamics. We employ beyond Born-Oppenheimer theory for these two state sub-Hilbert space to carry out adiabatic to diabatic transformation (ADT) to obtain the ADT angles and thereby, to construct single-valued, smooth, and continuous diabatic PESs. The analytic expressions for the adiabatic PESs and ADT angles are provided to represent a two-state three-mode diabatic Hamiltonian of NO2 for performing nuclear dynamics to calculate the photo-electron spectra of its anion. It appears that not only Jahn-Teller type coupling but also Renner-Teller interaction contributes significantly on the overall spectrum. The coupling between the electronic states (X(2)A1 and A(2)B2) of NO2 is essentially through the asymmetric stretching mode, where the functional form of such interaction is distinctly symmetric and non-linear.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA