Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Chem Sci ; 15(31): 12502-12510, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39118615

RESUMO

The majority of reported metallo-supramolecules are highly symmetric homoleptic assemblies of M x L y type, with a few reports on assemblies that are obtained using multicomponent self-assembly or using ambidentate ligands. Herein, we report the use of an unsymmetrical tetratopic ligand (Lun) containing pyridyl and imidazole donor sites in combination with a cis-protected Pd(ii) acceptor for the formation of a low-symmetry M8Lun 4 molecular barrel (UNMB). Four potential orientational isomeric (HHHH, HHHT, HHTT, and HTHT) molecular barrels can be anticipated for the M8Lun 4 type metallo-assemblies. However, the formation of an orientational isomer (HHTT) of the barrel was suggested from single-crystal X-ray diffraction and 1H NMR analysis of UNMB. Two large open apertures at terminals and the hydrophobic confined space surrounded by four aromatic panels of Lun make UNMB a potential host for bigger guests. UNMB encapsulates fullerenes C70 and C60 favoured by non-covalent interactions between the fullerenes and aromatic panels of the ligand molecules. Experimental and theoretical studies revealed that UNMB has the ability to bind C70 more strongly than its lower analogue C60. The stronger affinity of UNMB towards C70 was exploited to separate C70 from an equimolar mixture of C70 and C60. Moreover, C70 can be extracted from the C70⊂UNMB complex by toluene, and therefore, UNMB can be reused as a recyclable separating agent for C70 extraction.

2.
Angew Chem Int Ed Engl ; : e202411513, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160692

RESUMO

The dynamic behaviour of metal-ligand bonding cultivates stimuli-mediated structural transformations in self-assembled molecular architectures. The propensity of synthetically designed self-assembled systems to interchange between higher-order architectures is increased multi-fold when the building blocks have higher conformational degrees of freedom. Herein, we report a new ligand, (2,7-bis(di(pyridin-4-yl)amino)-9H-fluoren-9-one) (L), which, upon self-assembly with a cis-[(ethylene-1,2-diamine)Pd(NO3)2] acceptor (M), resulted in the formation of a M6L3 trifacial barrel (C1) in water. Interestingly, during crystallization, a rare M12L6 triangular orthobicupola architecture (C2) was generated along with C1. C2 could also be generated in solution via the application of several stimuli. C1 in aqueous medium could stabilize one trans-stilbene (tS) or cis-stilbene (cS) molecule in its cavity, with a selectivity for the former from their mixture. Moreover, C1 acted as an effective host to prevent the otherwise facile photoisomerization of tS to cS inside its hydrophobic cavity under UV irradiation. Conversely, the visible-light-induced reverse isomerization of encapsulated cS to encapsulated tS could be achieved readily due to the better stabilization of tS within the cavity of C1 and its transparency to visible light. A multi-functional system was therefore designed, which at the same time is stimuli-responsive, shows isomer selectivity, and photo-protects trans-stilbene.

3.
J Am Chem Soc ; 146(36): 24901-24910, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39197147

RESUMO

The effect of host-guest interactions on the chemistry of encapsulated molecules is a fascinating field of research that has gained momentum in recent years. Much of the work in this field has been focused on the effect of such interactions on catalysis and photoluminescence of encapsulated dyes. However, the effect of such interactions on related photoinduced processes, such as photoregulated oxidase-mimicking activity, has not been explored much. Herein, we report a unique example of enhancement of oxidase-like activity of a benzothiadiazole dye (G1) in water through encapsulation within a M8L4 molecular barrel (1). Favorable host-guest interactions helped the encapsulated guest G1 to have better photoinduced electron transfer to molecular oxygen leading to increased production of superoxide radical anions and oxidase-like activity. Furthermore, encapsulation inside 1 also caused a change in the redox potentials of the guest (G1) which after photoinduced electron transfer produced a better oxidizing agent than free G1. These phenomena combined to enhance the oxidase-like activity of dye G1 upon encapsulation inside cage 1. The present report demonstrates a unique effect of host-guest chemistry on photoregulated processes.


Assuntos
Corantes , Oxirredutases , Tiadiazóis , Água , Tiadiazóis/química , Água/química , Corantes/química , Oxirredutases/química , Oxirredutases/metabolismo , Estrutura Molecular , Oxirredução
4.
Inorg Chem ; 63(32): 14924-14932, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39129449

RESUMO

Research on the synthesis of catenated cages has been a growing field of interest in the past few years. While multiple types of catenated cages with different structures have been synthesized, the application of such systems has been much less explored. Specifically, the use of catenated cages in the separation of industrially relevant molecules that are present in coal tar has not been explored before. Herein, we demonstrate the use of a newly synthesized interlocked cage 1 [C184H240N76O48Pd6] (M6L4), formed through the self-assembly of ligand L.HNO3 (tris(4-(1H-imidazole-1-yl)benzylidene)hydrazine-1-carbohydrazonhydrazide) with acceptor cis-[(tmchda)Pd(NO3)2] [tmchda = ±N,N,N',N'-tetramethylcyclohexane-1,2-diamine] (M). The interlocked cage 1 was able to separate the isomers (anthracene and phenanthrene) using a simple solvent extraction technique. Using the same technique, the much more difficult separation of structurally and physiochemically similar compounds acenaphthene and acenaphthylene was performed for the first time with 1 as the host. Other noninterlocked hexanuclear Pd6 cages having a wider cavity proved inefficient for such separation, demonstrating the uniqueness of the interlocked cage 1 for such challenging separation.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39166842

RESUMO

Global consumption and discharge of palladium (Pd) have raised environmental concerns but also present an opportunity for the sustainable recovery and reuse of this precious metal. Adsorption has proven to be an efficient method for the selective recovery of Pd from industrial wastewater. This study investigated a hydrazone-linked covalent organic framework (Tfpa-Od COF) as a potential material for the high-affinity adsorption of Pd2+ ions from wastewater, achieving a Kd value of 3.62 × 106 mL g-1. The electron-rich backbone of the COF contributes to its excellent selective removal efficiency (up to 100%) and adsorption capacity of 372.59 mg g-1. Furthermore, the Pd-adsorbed COF was evaluated as a sustainable catalyst for the Suzuki-Miyaura coupling reaction, demonstrating good catalytic conversion and recyclability. This work attempts to showcase a protocol for reusing waste palladium generated in water to fabricate heterogeneous catalysts and, thereby, promote the circular economy concept.

6.
JACS Au ; 4(8): 3238-3247, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39211591

RESUMO

Molecular hosts with functional cavities can emulate enzymatic behavior through selective encapsulation of substrates, resulting in high chemo-, regio-, and stereoselective product formation. It is still challenging to synthesize enzyme-mimicking hosts that exhibit a narrow substrate scope that relies upon the recognition of substrates based on the molecular size. Herein, we introduce a Pd4 self-assembled water-soluble molecular capsule [M 4 L 2] (MC) that was formed through the self-assembly of a ligand L (4',4‴'-(1,4-phenylene)bis(1',4'-dihydro-[4,2':6',4″-terpyridine]-3',5'-dicarbonitrile)) with the acceptor cis-[(en)Pd(NO3)2] [en = ethane-1,2-diamine] (M). The molecular capsule MC showed size-selective recognition towards xylene isomers. The redox property of MC was explored for efficient and selective oxidation of one of the alkyl groups of m-xylene and p-xylene to their corresponding toluic acids using molecular O2 as an oxidant upon photoirradiation. Employing host-guest chemistry, we demonstrate the homogeneous catalysis of alkyl aromatics to the corresponding monocarboxylic acids in water under mild conditions. Despite homogeneous catalysis, the products were separated from the reaction mixtures by simple filtration/extraction, and the catalyst was reused. The larger analogues of the alkyl aromatics failed to bind within the MC's hydrophobic cavity, resulting in a lower/negligible reaction outcome. The present study represents a facile approach for selective photo-oxidation of xylene isomers to their corresponding toluic acids in an aqueous medium under mild conditions.

7.
Chem Commun (Camb) ; 60(43): 5573-5585, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38738480

RESUMO

Metal-organic self-assembly with flexible moieties is a budding field of research due to the possibility of the formation of unique architectures. Tetrazole, characterised by four nitrogen atoms in a five-member ring, exhibits immense potential as a component. Tetrazole offers four coordination sites for binding to the metal centre with nine distinct binding modes, leading to various assemblies. This review highlights different polymeric and discrete tetrazole-based assemblies and their functions. The meticulous manipulation of stoichiometry, ligands, and metal ions required for constructing discrete assemblies has also been discussed. The different applications of these architectures in separation, catalysis and detection have also been accentuated. The latter section of the review consolidates tetrazole-based cage composites, highlighting their applications in cell imaging and photocatalytic applications.

8.
J Am Chem Soc ; 146(22): 15301-15308, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38785321

RESUMO

Designing supramolecular architectures with uncommon geometries has always been a key goal in the field of metal-ligand coordination-driven self-assembly. It acquires added significance if functional building units are employed in constructing such architectures for fruitful applications. In this report, we address both these aspects by developing a water-soluble Pd16L8 coordination cage 1 with an unusual square orthobicupola geometry, which was used for selective aerobic oxidation of aryl sulfides. Self-assembly of a benzothiadiazole-based tetra-pyridyl donor L with a ditopic cis-[(tmeda)Pd(NO3)2] acceptor [tmeda = N,N,N',N'-tetramethylethane-1,2-diamine] produced 1, and the geometry was determined by single-crystal X-ray diffraction study. Unlike the typically observed tri- or tetrafacial barrel, the present Pd16L8 coordination assembly features a distinctive structural topology and is a unique example of a water-soluble molecular architecture with a square orthobicupola geometry. Efficient and selective aerobic oxidation of sulfides to sulfoxides is an important challenge as conventional oxidation generally leads to the formation of sulfoxide along with toxic sulfone. Cage 1, designed with a ligand containing a benzothiadiazole moiety, demonstrates an ability to photogenerate reactive oxygen species (ROS) in water, thus enabling it to serve as a potential photocatalyst. The cage showed excellent catalytic efficiency for highly selective conversion of alkyl and aryl sulfides to their corresponding sulfoxides, therefore without the formation of toxic sulfones and other byproducts, under visible light in aqueous medium.

9.
Chem Sci ; 15(10): 3616-3624, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38455025

RESUMO

Quinones (QN) are one of the main components of diesel exhaust particulates that have significant detrimental effects on human health. Their extraction and purification have been challenging tasks because these atmospheric particulates exist as complex matrices consisting of inorganic and organic compounds. In this report, we introduce a new water soluble Pd4L2 molecular architecture (MT) with an unusual tweezer-shaped structure obtained by self-assembly of a newly designed phenothiazine-based tetra-imidazole donor (L) with the acceptor cis-[(tmeda)Pd(NO3)2] (M) [ tmeda = N,N,N',N'-tetramethylethane-1,2-diamine]. The molecular tweezer encapsulates some quinones existing in diesel exhaust particulates (DEPs) leading to the formation of host-guest complexes in 1 : 1 molar ratio. Moreover, MT binds phenanthrenequinone (PQ) more strongly than its isomer anthraquinone (AQ), an aspect that enables extraction of PQ with a purity of 91% from an equimolar mixture of the two isomers. Therefore, MT represents an excellent example of supramolecular receptor capable of selective aqueous extraction of PQ from PQ/AQ with many cycles of reusability.

11.
Angew Chem Int Ed Engl ; 63(18): e202401136, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38379203

RESUMO

The development of artificial light-harvesting systems mimicking the natural photosynthesis method is an ever-growing field of research. Numerous systems such as polymers, metal complexes, POFs, COFs, supramolecular frameworks etc. have been fabricated to accomplish more efficient energy transfer and storage. Among them, the supramolecular coordination complexes (SCCs) formed by non-covalent metal-ligand interaction, have shown the capacity to not only undergo single and multistep energy migration but also to utilize the harvested energy for a wide variety of applications such as photocatalysis, tunable emissive systems, encrypted anti-counterfeiting materials, white light emitters etc. This review sheds light on the light-harvesting behavior of both the 2D metallacycles and 3D metallacages where design ingenuity has been executed to afford energy harvesting by both donor ligands as well as metal acceptors.

12.
Inorg Chem ; 63(5): 2569-2576, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38241721

RESUMO

Developing sensitive, rapid, and convenient methods for the detection of residual toxic pesticides is immensely important to prevent irreversible damage to the human body. Luminescent metal-organic cages and macrocycles have shown great applications, and designing highly emissive supramolecular systems in dilute solution using metal-ligand coordination-driven self-assembly is demanded. In this study, we have demonstrated the development of a silver-carbene bond directed tetranuclear silver(I)-octacarbene metallacage [Ag4(L)2](PF6)4 (1) based on an aggregation-induced emissive (AIE) cored 1,1',1″,1‴-((1,4-phenylenebis(ethene-2,1,1-triyl))tetrakis(benzene-4,1-diyl))tetrakis(3-methyl-1H-imidazol-3-ium) salt (L). A 36-fold enhanced emission was observed after metallacage (1) formation when compared with the ligand (L) in dilute solution due to the restriction of intramolecular motions imparted by metal-ligand coordination. Such an increase in fluorescence made 1 a potential candidate for the detection of a broad-spectrum pesticide, 2,6-dichloro-nitroaniline (DCN). 1 was able to detect DCN efficiently by the fluorescence quenching method with a significant detection limit (1.64 ppm). A combination of static and dynamic quenching was applicable depending on the analyte concentration. The use of silver-carbene bond directed self-assembly to exploit coordination-induced emission as an alternative to AIE in dilute solution and then apply this approach to solve health and safety concerns is noteworthy and carries a lot of potential for future developments.

13.
Inorg Chem ; 63(1): 508-517, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38117135

RESUMO

A new tetraphenylpyrazine-based tetraimidazole ligand (L) was synthesized and used for subcomponent self-assembly with cis-(tmeda)Pd(NO3)2 and cis-Pt(PEt3)2(OTf)2, leading to the formation of two tetrafacial barrels [Pd8L4(tmeda)8](NO3)16 (1) and [Pt8L4(PEt3)16](OTf)16 (2), respectively. Although ligand L is aggregation-induced emission (AIE) active, barrel 2 showed a magnificently higher AIE activity than ligand L, while 1 failed to retain the AIE properties of the ligand. Pd(II) barrel 1, undergoing an aggregation-caused quenching (ACQ) phenomenon, nullified the AIE activity of the ligand to be used in the photophysical application. The enhanced emission in the aggregated state of Pt(II) barrel 2 was used for the recognition of picric acid (PA), which is explosive in nature and one of the groundwater contaminants in landmine areas. The recognition of picric acid was found to be selective in comparison with that of other nitroaromatic compounds (NACs), which could be attributed to ground-state complex formation and resonance energy transfer between picric acid and barrel 2. The use of new AIE-active assembly 2 for selective detection of PA with a low detection limit is noteworthy.

14.
Chemistry ; 30(10): e202303101, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38116855

RESUMO

Developing luminescent materials that exhibit strong emissions in both solution and solid phases is highly desirable and challenging. Herein, we report imine-bond directed formation of a rigid organic cage (TPE-cage) that was synthesized by [2+4] imine condensation of a TPE-cored tetra-aldehyde (TPE-TA) with a clip-like diamine (XA) to illustrate confinement-induced fluorescence enhancement. Compared to the non-emissive TPE-TA (ϕF =0.26 %) in the dichloromethane (DCM) solution, the TPE-cage achieved a remarkable (~520-fold) emission enhancement (ϕF =70.38 %). In contrast, a monomeric tetra-imine model compound (TPE-model) showed only a minor enhancement (ϕF =0.56 %) in emission compared to the parent tetra-aldehyde TPE-TA. The emission of TPE-cage was further enhanced by ~1.5-fold (ϕF =80.96 %) in the aggregated state owing to aggregation-induced emission enhancement (AIEE). This approach establishes the potential for synthesizing luminescent materials with high emission in both solution and solid-state by employing a single-step imine condensation reaction.

15.
J Am Chem Soc ; 145(49): 26973-26982, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38019887

RESUMO

Chemical reactions inside the confined pockets of enzyme-mimicking hosts, such as cages and macrocycles, have been an emerging field of interest over the past decade. Although many such reactions are known, the use of such cages toward the divergent synthesis of nonisomeric products has not been well explored. Divergent synthesis is a technique of forming two or more distinct products from the same reagents by changing the catalyst or reaction conditions. Changing the shape of the cage can also change the nature and magnitude of the host-guest interactions. Thus, is it possible for such changes to cause differences in the reaction pathways leading to formation of nonisomeric products? Herein, we report a divergent chemical transformation of anthrone [anthracen-9(10H)-one] inside different water-soluble M6L4 cages. When anthrone was encapsulated inside a newly synthesized M6L4 octahedral cage 1, it dimerized to form dianthrone [9,9'-bianthracen-10,10'(9H,9'H)-dione]. In contrast, when the same chemical reaction was performed inside a M6L4 double-square shaped cage 2, it was oxidized to form anthraquinone [anthracene-9,10-dione]. Similar results were obtained with a different set of isomeric aqueous Pd6 cages 3a (octahedral cage) and 3b (double-square cage), indicating the dependence of the shape of cavity on the divergent synthesis. The present report demonstrates a unique example of different outcomes/results of a reaction depending on the shape of the molecular container, which was driven by the host-guest interactions and the preorganization of the substrates.

16.
PLOS Glob Public Health ; 3(10): e0001390, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37792715

RESUMO

India has a high burden of Tuberculosis (TB), accounting for a significant portion of global cases. While efforts are being made to engage the formal private sector in the National TB Elimination Program (NTEP) of India, there remains a significant gap in addressing the engagement of Informal Healthcare Providers (IPs), who serve as the first point of contact for healthcare in many communities. Recognizing the increasing evidence of IPs' importance in TB care, it is crucial to enhance their engagement in the NTEP. Therefore, this study explored various factors influencing the engagement of IPs in the program. A qualitative study was conducted in West Bengal, India, involving 23 IPs and 11 Formal Providers (FPs) from different levels of the formal health system. Thematic analysis of the data was conducted following a six-step approach outlined by Braun and Clarke. Three overarching themes were identified in the analysis, encompassing barriers and facilitators to IPs' engagement in the NTEP. The first theme focused on IPs' position and capacity as care providers, highlighting their role as primary care providers and the trust and acceptance extended by the community. The second theme explored policy and system-level drivers and prohibitors, revealing barriers such as role ambiguity, competing tasks, and quality of care issues. Facilitators such as growing recognition of IPs' importance in the health system, an inclusive incentive system, and willingness to collaborate were also identified. The third theme focused on the relationship between the formal and informal systems, highlighting a need to strengthen the relationship between the two. This study sheds light on factors influencing the engagement of IPs in the NTEP of India. It emphasizes the need for role clarity, knowledge enhancement, and improved relationships between formal and informal systems. By addressing these factors, policymakers and stakeholders can strengthen the engagement of IPs in the NTEP.

17.
JACS Au ; 3(7): 1998-2006, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37502154

RESUMO

Structural and functional modulation of three-dimensional artificial macromolecular systems is of immense importance. Designing supramolecular cages that can show stimuli mediated reversible switching between higher-order structures is quite challenging. We report here construction of a Pd6 trifacial barrel (1) by coordination self-assembly. Surprisingly, barrel 1 was found to exhibit guest-responsive behavior. In presence of fullerenes C60 and C70, 1 unprecedentedly transformed to its metastable higher homologue Pd8 tetrafacial barrel (2), forming stable host-guest complexes (C60)3⊂2 and (C70)2⊂2, respectively. Again, encapsulated fullerenes could be extracted from the cavity of 2 using 1,2-dichlorobenzene, leading to its facile conversion to the parent trifacial barrel 1. Such reversible structural interconversion between an adaptable molecular barrel and its guest stabilized higher homologue is an uncommon observation.

18.
Inorg Chem ; 62(28): 11037-11043, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37411006

RESUMO

A tetraphenylethylene (TPE)-based flexible imidazolium (L) salt was used to develop a di-nuclear silver(I)-tetracarbene (1) complex. Coordination-induced rigidity upon formation of 1 exhibited a 6-fold increase in emission intensity in acetonitrile compared to starting L. Despite TPE being a well-known aggregation-induced emissive moiety, AgI-N-heterocyclic carbene (NHC) complex 1 had a remarkably higher fluorescence emission (4-fold) in dilute solution when compared with L in its aggregated state. Finally, this enhanced emission was used to institute a new platform for an artificial light-harvesting system. 1 acted as an energy donor and efficiently transferred energy to Eosin Y (ESY) with a high saturation at a 67:1 (1/ESY) molar ratio. Use of rigidification-induced emission of the AgI-NHC complex to fabricate a light-harvesting scaffold is a new approach and can greatly impact the generation of smart materials.

19.
Lancet Reg Health Southeast Asia ; 12: 100142, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37384057

RESUMO

Background: Non-communicable diseases including metabolic health disorders are becoming area of concern for low/middle income countries with poor health-care resources. Present study was planned to assess the prevalence of metabolically unhealthy (MU) subjects in the community and proportion of the MU subjects having the risk of significant Non-alcoholic Fatty Liver Disease (NAFLD) using a step-wise evaluation strategy in a resource-poor setting. Methods: Study was performed in 19 community development blocks of Birbhum district, West Bengal, India. Every fifth member in the electoral list was included for the first step evaluation (n = 79,957/1,019,365, 7.8%) to detect any metabolic risk. Subjects with any metabolic risk in the first step (n = 9819/41,095, 24%) were taken for second step evaluation with Fasting blood glucose (FBG) and ALT. Subjects with elevated FBG and/or ALT in the second step (n = 1403/5283, 27%) were taken into third step evaluation. Finding: At least one risk factor was found in 51.4% (n = 41,095/79,957). 63% (n = 885/1403) of the subjects with metabolic abnormality (third step) had MU state making its overall prevalence of 1.1% (n = 885/79,957). 53% of MU subjects (n = 470/885) had 'persistently elevated ALT' suggesting the risk of having significant NAFLD. Interpretation: Step-wise evaluation strategy could detect the subjects at risk, actually having MU state and proportion of MU subjects at risk of having 'persistently elevated ALT' (surrogate of significant NAFLD) in the community with minimum utilization of scarce resources. Funding: This study was funded by Bristol Myers Squibb Foundation, USA, under the program 'Together on Diabetes Asia' (Project Number: 1205 - LFWB).

20.
Inorg Chem ; 62(23): 9230-9239, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37263966

RESUMO

Phenanthrene is a high-value raw material in chemical industries. Separation of phenanthrene from isomeric anthracene continues to be a big challenge in the industry due to their very similar physical properties. Herein, we report the self-assembly of a water-soluble molecular bowl (TB) from a phenothiazine-based unsymmetrical terapyridyl ligand (L) and a cis-blocked 90° Pd(II) acceptor. TB featured an unusual bowl-like topology, with a wide rim diameter and a hydrophobic inner cavity fenced by the aromatic rings of the ligand. The above-mentioned features of TB allow it to bind polyaromatic hydrocarbons in its confined cavity. TB shows a higher affinity for phenanthrene over its isomer anthracene in water, which enables it to separate phenanthrene with ∼93% purity from an equimolar mixture of phenanthrene and anthracene. TB is also able to extract pyrene with around ∼90% purity from an equimolar mixture of coronene, perylene, and pyrene. Moreover, TB can be reused for several cycles without significant degradation in its performance as an extracting agent. This clean strategy of separation of phenanthrene and pyrene from a mixture of hydrophobic hydrocarbons by aqueous extraction is noteworthy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA