Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(15): 4191-4196, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38598408

RESUMO

Cs3Cu2I5 perovskite displays a Stokes-shifted photoluminescence (PL) at 445 nm, attributed to the self-trapped excitons (STEs). Unlike that observed in other perovskite materials, the free-exciton emission is not evidenced in this case. Herein, we reveal the existence of a short-lived high-energy emission centered around 375 nm through the reconstruction of time-resolved emission spectra (TRES), which is independent of the shape/size of Cs3Cu2I5 perovskite. This high-energy emission is proposed to originate from the free-exciton-derived distorted S1 state of the 0D Cs3Cu2I5 moiety. Moreover, STE PL (∼445 nm) was found to have phosphorescence characteristics. Theoretical calculation confirms a facile intersystem crossing at the Franck-Condon geometry, indicating the high lifetime of the STE and its triplet nature. The existence of a high-energy emissive state and the phosphorescent nature of the STE PL band provide valuable insights that could advance our understanding of the photophysics in these materials.

2.
Biophys Chem ; 307: 107195, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38325036

RESUMO

This paper delves into an investigation of the solubility characteristics of L-tryptophan within binary solvent systems containing aqueous acetonitrile. The primary emphasis of the study revolves around assessments based on mole fractions. The study utilizes these solubility values to assess thermodynamic constraints, including solution entropies and solution transfer free energetics. The calculated thermodynamic energies are correlated with interaction parameters, including Gibbs free energies and entropies, pertaining to the transfer of L-tryptophanfrom water to binary solvent blends of acetonitrile and water. Mathematical expressions are utilized to determine the transfer Gibbs free energies for chemical interactions, and the consequent entropies are clarified within the framework of solvent-solvent interactions. To expound upon the stability of L-tryptophan within the water-acetonitrile mixed system, we investigate the energetic aspects related to the transfer of chemicals Gibbs free energies. Additionally, standard temperature (298.15 K) is employed to calculate various related physicochemical parameters of solute/solvent.


Assuntos
Triptofano , Água , Temperatura , Solubilidade , Termodinâmica , Solventes
3.
ACS Omega ; 8(39): 36604-36613, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37810704

RESUMO

Molecular rotor dye thioflavin T (ThT) is almost nonfluorescent in low-viscosity solvents but highly fluorescent when bound to amyloid fibrils. This unique property arises from the rotation of the dimethylaniline moiety relative to the benzothiazole moiety in the excited state, which drives the dye from an emissive locally excited state to a twisted intramolecular charge-transfer state. This process is viscosity-controlled, and therefore, we can use the quantum yield of ThT to assess the viscosity of the environment. In this study, we have investigated the quantum yield of ThT (φThT) in various compositions of six alcoholic solvent mixtures of glycerol with methanol, ethanol, n-propanol, iso-propanol, n-butanol, and tert-butanol. We have proposed an empirical model using φThT as a function of the mole fraction of glycerol to estimate the interaction parameters between the components of the solvent mixtures. This analysis allowed us to predict the extent of nonideality of the solvent mixtures. The Förster-Hoffmann- and Loutfy-Arnold-type power law relationship was established between the quantum yield of ThT and bulk viscosity for solvent mixtures of methanol, ethanol, n-butanol, and tert-butanol with glycerol, and it was found to be similar in nature in all the four mixtures. Applying this knowledge, we proposed a methodology to quantify and predict the bulk viscosity coefficient values of several compositions of n-propanol-glycerol and iso-propanol-glycerol mixtures which have not been previously documented.

4.
Adv Protein Chem Struct Biol ; 122: 33-62, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32951815

RESUMO

Enzymes are dynamic in nature and understanding their activity depends on exploring their overall structural fluctuation as well as transformation at the active site in free state as well as turnover conditions. In this chapter, the application of several different spectroscopy techniques viz. single molecule spectroscopy, ultrafast spectroscopy and Raman spectroscopy in the context of enzyme dynamics and catalysis are discussed. The importance of such studies are significant in the understanding of new discoveries of drugs, cure for some lethal diseases, gene modification as well as in industrial applications.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/química , Enzimas , Simulação de Dinâmica Molecular , Catálise , Inibidores Enzimáticos/uso terapêutico , Enzimas/química , Enzimas/metabolismo , Humanos , Imagem Individual de Molécula
5.
Phys Chem Chem Phys ; 19(18): 11220-11229, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28405642

RESUMO

We have studied the bimolecular photoinduced electron transfer (PET) reaction between benzophenone (Bp) and DABCO using femtosecond broadband transient absorption spectroscopy in different compositions of acetonitrile/1-butanol binary solvent mixtures. With the increase in the 1-butanol percentage in the mixture, we have observed an increase in the onset delay time of Bp˙-, which is the product of the reaction. As 1-butanol is more viscous than acetonitrile, we related the onset time to the change in medium viscosity. Moreover, we undertook a complete kinetic analysis of the bimolecular PET reaction under different conditions to show that from transient absorption spectroscopy, we can get the exact rate of electron transfer. This kind of kinetic analysis along with the experimental data is the first of its kind to prove that transient absorption spectroscopy is probably the most useful tool in studying the PET reaction.

6.
J Phys Chem B ; 121(7): 1610-1622, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28140599

RESUMO

Ultrafast bimolecular photoinduced electron transfer (PET) between six coumarin dyes and four viologen molecules in the stern layer of sodium dodecyl sulfate micelle have been studied using femtosecond broadband transient absorption spectroscopy and femtosecond fluorescence up-conversion spectroscopy over a broad reaction exergonicity (ΔG0). Emanating the formation of radical cation intermediates of viologen molecules using the transient absorption and the fast decay component of coumarins using the fluorescence up-conversion studies the forward bimolecular electron transfer rate (ket) have been measured with high accuracy. The relationship of ket with ΔG0 found to follow a Marcus type bell-shaped dependence with an inversion at -1.10 eV. In this report, we have studied PET reaction using ultrafast spectroscopy at the quencher concentration where static quenching regime prevails. Moreover, the incompetency of Stern-Volmer experiments in studying ultrafast PET has been revealed. In contrary to previous claims, here we found that the ket is lower for lower lifetime coumarins, indicating that static, nonstationary and stationary regime of quenching have the minimal role to play to in the bimolecular electron transfer process. By far, this report is believed to be the most efficient and immaculate way of approaching Marcus inverted region problem in the case of bimolecular PET and settles the long-lasting debate of whether the same can be observed in micellar systems.

7.
Langmuir ; 32(7): 1693-9, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26854978

RESUMO

In this work, we have addressed the problem of "acidity" of the water-pool of a reverse micelle (RM) through the well-known inversion of sucrose reaction as a tool of investigation. This reaction has been performed inside positively and negatively charged RM and the rates are compared with that in bulk water. We propose that the buffer-like action in a water-pool is much stronger than expected earlier. The rate of sucrose hydrolysis slowed down in the negatively charged AOT reverse micelle while it sped up for the positively charged CTAB reverse micelle. However, temperature-dependent measurements showed that the activation energy remained the same for all the cases. It has been concluded that a proton gradient exists inside the water-pool of the reverse micelle and it determines the buffer-like action of the water-pool that persists until about 2 N of HCl in AOT RM of w(0) = 10.5.

8.
J Phys Chem B ; 119(34): 11253-61, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26132374

RESUMO

Fluorescence quenching studies through steady-state and time-resolved measurements are inadequate to quantify the bimolecular electron transfer rate in bulk homogeneous solution due to constraints from diffusion. To nullify the effect of diffusion, direct evaluation of the rate of formation of a transient intermediate produced upon the electron transfer is essential. Methyl viologen, a well-known electron acceptor, produces a radical cation after accepting an electron, which has a characteristic strong and broad absorption band centered at 600 nm. Hence it is a good choice to evaluate the rate of photoinduced electron transfer reaction employing femtosecond broadband transient absorption spectroscopy. The time constant of the aforementioned process between pyrene and methyl viologen in methanol has been estimated to be 2.5 ± 0.4 ps using the same technique. The time constant for the backward reaction was found to be 14 ± 1 ps. These values did not change with variation of concentration of quencher, i.e., methyl viologen. Hence, we can infer that diffusion has no contribution in the estimation of rate constants. However, on changing the solvent from methanol to ethanol, the time constant of the electron transfer reaction has been found to increase and has accounted for the change in solvent reorganization energy.


Assuntos
Elétrons , Luz , Paraquat/química , Pirenos/química , Transporte de Elétrons , Cinética , Estrutura Molecular , Oxirredução , Espectrofotometria Atômica
9.
Artigo em Inglês | MEDLINE | ID: mdl-22446788

RESUMO

The phenomenon of Förster resonance energy transfer (FRET) between pyrene and bovine serum albumin (BSA) protein in presence of cyclodextrins (CDs) is explored in the present work. CDs provide hydrophobic environment and thus the aromatic molecules get encapsulated in them depending on the relative size and space. In this work we revealed that along with pyrene monomer, the side chains of amino acids in BSA can get trapped partly in the hydrophobic cavities of CDs if space permits. While being encapsulated by ß-CD as pyrene monomer, it can interact with the BSA tryptophan moiety exposed toward the aqueous environment to form a dimer through π-π interaction. This, in turn, affects the energy transfer process by reducing the efficiency. On the other hand, pyrene excimer gets encapsulated in a γ-CD molecule due to availability of enough space. The excimer shows a new band at a higher wavelength. This further reduces FRET efficiency due to scarcity of acceptor for the tryptophan moieties in BSA.


Assuntos
Ciclodextrinas/química , Transferência Ressonante de Energia de Fluorescência , Pirenos/química , Soroalbumina Bovina/química , Animais , Bovinos , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA