Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Small ; 20(28): e2311448, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38326094

RESUMO

The development of a cost-effective, ultra-selective, and room temperature gas sensor is the need of an hour, owing to the rapid industrialization. Here, a new 2D semiconducting Cu(I) coordination polymer (CP) with 1,4-di(1H-1,2,4-triazol-1-yl)benzene (1,4-TzB) ligand is reported. The CP1 consists of a Cu2I2 secondary building unit bridged by 1,4-TzB, and has high stability as well as semiconducting properties. The chemiresistive sensor, developed by a facile drop-casting method derived from CP1, demonstrates a response value of 66.7 at 100 ppm on methanol exposure, accompanied by swift transient (response and recovery time 17.5 and 34.2 s, respectively) behavior. In addition, the developed sensor displays ultra-high selectivity toward methanol over other volatile organic compounds , boasting LOD and LOQ values of 1.22 and 4.02 ppb, respectively. The CP is found to be a state-of-the-art chemiresistive sensor with ultra-high sensitivity and selectivity toward methanol at room temperature.

2.
Comput Biol Med ; 152: 106331, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502692

RESUMO

In this era of Coronavirus disease 2019 (COVID-19), an accurate method of diagnosis with less diagnosis time and cost can effectively help in controlling the disease spread with the new variants taking birth from time to time. In order to achieve this, a two-dimensional (2D) tunable Q-wavelet transform (TQWT) based on a memristive crossbar array (MCA) is introduced in this work for the decomposition of chest X-ray images of two different datasets. TQWT has resulted in promising values of peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) at the optimum values of its parameters namely quality factor (Q) of 4, and oversampling rate (r) of 3 and at a decomposition level (J) of 2. The MCA-based model is used to process decomposed images for further classification with efficient storage. These images have been further used for the classification of COVID-19 and non-COVID-19 images using ResNet50 and AlexNet convolutional neural network (CNN) models. The average accuracy values achieved for the processed chest X-ray images classification in the small and large datasets are 98.82% and 94.64%, respectively which are higher than the reported conventional methods based on different models of deep learning techniques. The average accuracy of detection of COVID-19 via the proposed method of image classification has also been achieved with less complexity, energy, power, and area consumption along with lower cost estimation as compared to CMOS-based technology.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico por imagem , Raios X , Tórax , Redes Neurais de Computação , Razão Sinal-Ruído
3.
Chem Commun (Camb) ; 56(65): 9348-9351, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32672316

RESUMO

A hydrazide based covalent organic polymer (COP) with pyridine functionalities has been synthesized and used to fabricate an efficient chemosensor for the detection of gaseous H2S at 25 °C through a proton conduction process. The gas sensing behavior of the COP has been measured in a dynamic flow-through resistance measurement system. The COP fabricated sensor shows a lower response time of 9 s with a recovery time of 12 s, when the experiment is performed with a H2S concentration of 200 ppm at 25 °C. It also shows high selectivity to H2S gas compared to other gases such as CO2, NH3, CO and NO2.

4.
Chempluschem ; 85(5): 910-920, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32401425

RESUMO

In this work, two symmetrical donor-acceptor-donor (D-A-D) type benzoselenadiazole (BSeD)-based π-conjugated molecules were synthesized and employed as an active switching layer for non-volatile data storage applications. BSeD-based derivatives with different donor units attached through common vinylene linkers showed different electrical and optical properties. 4,7-Di((E)-styryl)benzo[c][2,1,3]selenadiazole (DSBSeD) and 4,7-bis((E)-4-methoxystyryl)benzo[c][2,1,3]selenadiazole (DMBSeD) are sandwiched between gallium-doped ZnO (GZO) and metal aluminum electrodes respectively through solution-processed spin-coating method. The solution-processed nanofibrous switching layer containing the DMBSeD-based memory device showed reliable memory characteristics in terms of write and erase operations with low SET voltage than the random-aggregated DSBSeD-based device. The nanofibrous molecular morphology of switching layer overcomes the interfacial hole transport energy barrier at the interface of the DMBSeD thin-film and the bottom GZO electrode. The memory device GZO/DMBSeD/Al based on nanofibrous switching layers shows switching characteristics at compliance current of 10 mA with Vset =0.79 V and Vreset =-0.55 V. This work will be beneficial for the rational design of advanced next-generation organic memory devices by controlling the nanostructured morphology of active organic switching layer for enhanced charge-transfer phenomenon.

5.
ACS Appl Mater Interfaces ; 10(6): 5464-5474, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29356500

RESUMO

The use of the high free-electron concentration in heavily doped semiconductor enables the realization of plasmons. We report a novel approach to generate plasmons in Ga:ZnO (GZO) thin films in the wide spectral range of ∼1.87-10.04 eV. In the grown GZO thin films, dual-ion beam sputtering (DIBS) instigated plasmon is observed because of the formation of different metallic nanoclusters are reported. Moreover, formation of the nanoclusters and generation of plasmons are verified by field emission scanning electron microscope, electron energy loss spectra obtained by ultraviolet photoelectron spectroscopy, and spectroscopic ellipsometry analysis. Moreover, the calculation of valence bulk, valence surface, and particle plasmon resonance energies are performed, and indexing of each plasmon peaks with corresponding plasmon energy peak of the different nanoclusters is carried out. Further, the use of DIBS-instigated plasmon-enhanced GZO can be a novel mean to improve the performance of photovoltaic, photodetector, and sensing devices.

6.
Nanotechnology ; 29(5): 055203, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29231180

RESUMO

Single synaptic device with inherent learning and memory functions is demonstrated based on a forming-free amorphous Y2O3 (yttria) memristor fabricated by dual ion beam sputtering system. Synaptic functions such as nonlinear transmission characteristics, long-term plasticity, short-term plasticity and 'learning behavior (LB)' are achieved using a single synaptic device based on cost-effective metal-insulator-semiconductor (MIS) structure. An 'LB' function is demonstrated, for the first time in the literature, for a yttria based memristor, which bears a resemblance to certain memory functions of biological systems. The realization of key synaptic functions in a cost-effective MIS structure would promote much cheaper synapse for artificial neural network.

7.
Chempluschem ; 81(3): 329-337, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31968787

RESUMO

A variety of hybrid nanostructures have been developed that emit white light. Two different white-light-emitting systems are reported. These are cadmium-doped zinc oxide nanosheets and complex lamellar nanostructures that consist of alternating inorganic cadmium-doped zinc oxide domains with the self-assembled aromatic-capped peptide BPI-FF-OH (BPI: benzo[ghi]perylene monoimide, F: d-phenylalanine). An electrochemical method is employed to synthesize cadmium-doped zinc oxide nanosheets and lamellar organic/cadmium-doped zinc oxide nanoflakes on a gallium-doped ZnO/p-Si (111) substrate. External structural features and internal structural ordering of wurtzite cadmium-doped zinc oxide and lamellar organic/cadmium-doped zinc oxide nanohybrids are characterized by small-angle X-ray scattering, XRD, field-emission SEM, energy-dispersive X-ray spectroscopy, secondary-ion mass spectrometry, ellipsometry, and photoluminescence spectroscopy. Cadmium-doped zinc oxide nanosheets and lamellar organic/cadmium-doped zinc oxide hybrids emit white light with a broad emission covering the visible spectrum from λ=415 to 700 nm. Characteristic white-light emissions of both materials were well characterized by photoluminescence studies. The white-light luminescence is attributed to cadmium doping in the zinc oxide crystal and the presence of the dipeptide-functionalized BPI fluorophore in the lamellar nanohybrid.

8.
Chempluschem ; 80(3): 583-590, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31973404

RESUMO

Aromatic organic molecules serve as optoelectronic materials owing to their intrinsic optical and electronic properties. Herein, self-assembled lamellar nanostructures as photoconductor hybrids, which are obtained from naphthalene-2-methoxycarbonyl (Nmoc)-capped peptide amphiphiles, are described. Hybrid nanostructures are constructed in a controlled manner by an electrochemical deposition technique in combination with the inorganic Zn(OH)2 phase. Inorganic Zn(OH)2 layers turn into semiconductor ZnO layers upon annealing at 150 °C and lamellar nanostructures are formed in a periodic manner. Synergistic effects of hydrogen bonding and π-π stacking interactions of aromatic peptide amphiphiles are the driving force for the formation of self-assembled lamellar nanostructures. Morphological, structural, and optical studies of such lamellar hybrid nanostructures are reported. Photoconduction of these hybrid nanostructures is also examined in detail.

9.
Opt Express ; 22(25): 30983-91, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25607047

RESUMO

p-type Sb-doped ZnO/i-CdZnO/n-type Ga-doped ZnO was grown by dual ion beam sputtering deposition system. Current-voltage characteristics of the heterojunction showed a diode-like rectifying behavior with a turn-on voltage of ~5 V. The diode yielded blue electroluminescence emissions at around 446 nm in forward biased condition at room temperature. The emission intensity increased with the increase of the injection current. A red shifting of the emission peak position was observed with the increment of ambient temperature, indicating a change of band gap of the CdZnO active layer with temperature in low-temperature measurement.

10.
J Nanosci Nanotechnol ; 10(7): 4329-34, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21128420

RESUMO

Silver nanorods were synthesized by burning out the as prepared Ag-PVA nanocomposite films at 300 degrees C in air. Aqueous PVA solution is acts as stabilizing agents for silver nanorods. The formation of silver nanorods was confirmed from the appearance of two surface plasmon absorption maxima at 425 and 465 nm due to transverse and longitudinal mode of vibration of electrons. SEM micrograph showed the resultant nanorods were 500-600 nm in length and 50-70 nm in diameter. It is supported by TEM with more 1000 nm in length and 40-60 nm diameters. The XRD demonstrated that the nanorods were present in fcc crystal of pure silver. Finally the X-ray photoelectron spectroscopy (XPS) also confirmed the formation of silver nanorods with 3d(5/2) and 3d(3/2) band at 368.6 and 374.6 eV respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA