Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Green Chem ; 26(2): 593-630, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38264324

RESUMO

The demand for biodegradable materials across various industries has recently surged due to environmental concerns and the need for the adoption of renewable materials. In this context, lignin has emerged as a promising alternative, garnering significant attention as a biogenic resource that endows functional properties. This is primarily ascribed to its remarkable origin and structure that explains lignin's capacity to bind other molecules, reinforce composites, act as an antioxidant, and endow antimicrobial effects. This review summarizes recent advances in lignin-based composites, with particular emphasis on innovative methods for modifying lignin into micro and nanostructures and evaluating their functional contribution. Indeed, lignin-based composites can be tailored to have superior physicomechanical characteristics, biodegradability, and surface properties, thereby making them suitable for applications beyond the typical, for instance, in ecofriendly adhesives and advanced barrier technologies. Herein, we provide a comprehensive overview of the latest progress in the field of lignin utilization in emerging composite materials.

2.
ACS Omega ; 5(39): 25253-25263, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33043203

RESUMO

Higher levels of fluoride (F-) in groundwater constitute a severe problem that affects more than 200 million people spread over 25 countries. It is essential not only to detect but also to accurately quantify aqueous F- to ensure safety. The need of the hour is to develop smart water quality testing systems that would be effective in location-based real-time water quality data collection, devoid of professional expertise for handling. We report a cheap, handheld, portable mobile device for colorimetric detection and rapid estimation of F- in water by the application of the synthesized core-shell nanoparticles (near-cubic ceria@zirconia nanocages) and a chemoresponsive dye (xylenol orange). The nanomaterial has been characterized thoroughly, and the mechanism of sensing has been studied in detail. The sensor system is highly selective toward F- and shows unprecedented sensitivity in the range of 0.1-5 ppm of F-, in field water samples, which is the transition regime, where remedial measures may be needed. It addresses multiple issues expressed by indicator-based metal complexes used to determine F- previously. Consistency in the performance of the sensing material has been tested with synthetic F- standards, water samples from F- affected regions, and dental care products like toothpastes and mouthwash using a smartphone attachment and by the naked eye. The sensor performs better than what was reported by prior works on aqueous F- sensing.

3.
ACS Appl Mater Interfaces ; 11(31): 28154-28163, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31298516

RESUMO

A simple, one-step electrodeposition approach has been used to fabricate MnOx on an indium-doped tin oxide substrate for highly sensitive As3+ detection. We report an experimental limit of detection of 1 ppb through anodic stripping voltammetry with selectivity to As3+ in the presence of 10 times higher concentrations of several metal ions. Additionally, we report the simultaneous phase evolution of active material occurring through multiple stripping cycles, wherein MnO/Mn2O3 eventually converts to Mn3O4 as a result of change in the oxidation states of manganese. This occurs with concomitant changes in morphology. Change in the electronic property (increased charge transfer resistance) of the material due to sensing results in an eventual decrease in sensitivity after multiple stripping cycles. In a nutshell, this paper reports stripping-voltammetry-induced change in morphology and phase of as-prepared Mn-based electrodes during As sensing.

4.
Sci Rep ; 9(1): 5358, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926863

RESUMO

Halophytes are rich sources of salt stress tolerance genes which have often been utilized for introduction of salt-tolerance character in salt-sensitive plants. In the present study, we overexpressed PcINO1 and PcIMT1 gene(s), earlier characterized in this laboratory from wild halophytic rice Porteresia coarctata, into IR64 indica rice either singly or in combination and assessed their role in conferring salt-tolerance. Homozygous T3/T4 transgenic plants revealed that PcINO1 transformed transgenic rice lines exhibit significantly higher tolerance upto 200 mM or higher salt concentration with negligible compromise in their growth or other physiological parameters compared to the untransformed system grown without stress. The PcIMT1-lines or the double transgenic lines (DC1) having PcINO1 and PcIMT1 introgressed together, were less efficient in such respect. Comparison of inositol and/or pinitol pool in three types of transgenic plants suggests that plants whose inositol production remains uninterrupted under stress by the functional PcINO1 protein, showed normal growth as in the wild-type plants without stress. It is conceivable that inositol itself acts as a stress-ameliorator and/or as a switch for a number of other pathways important for imparting salt-tolerance. Such selective manipulation of the inositol metabolic pathway may be one of the ways to combat salt stress in plants.


Assuntos
Inositol/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas , Oryza/genética , Oryza/metabolismo , Tolerância ao Sal/genética , Perfilação da Expressão Gênica , Vetores Genéticos , Fotossíntese , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo
5.
Planta ; 249(3): 891-912, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30465114

RESUMO

MAIN CONCLUSION: Expression of the Galactinol synthase genes in rice is regulated through post-transcriptional intron retention in response to abiotic stress and may be linked to Raffinose Family Oligosaccharide synthesis in osmotic perturbation. Galactinol synthase (GolS) is the first committed enzyme in raffinose family oligosaccharide (RFO) synthesis pathway and synthesizes galactinol from UDP-galactose and inositol. Expression of GolS genes has long been implicated in abiotic stress, especially drought and salinity. A non-canonical regulation mechanism controlling the splicing and maturation of rice GolS genes was identified in rice photosynthetic tissue. We found that the two isoforms of Oryza sativa GolS (OsGolS) gene, located in chromosomes 3(OsGolS1) and 7(OsGolS2) are interspersed by conserved introns harboring characteristic premature termination codons (PTC). During abiotic stress, the premature and mature transcripts of both isoforms were found to accumulate in a rhythmic manner for very small time-windows interrupted by phases of complete absence. Reporter gene assay using GolS promoters under abiotic stress does not reflect this accumulation profile, suggesting that this regulation occurs post-transcriptionally. We suggest that this may be due to a surveillance mechanism triggering the degradation of the premature transcript preventing its accumulation in the cell. The suggested mechanism fits the paradigm of PTC-induced Nonsense-Mediated Decay (NMD). In support of our hypothesis, when we pharmacologically blocked NMD, the full-length pre-mRNAs were increasingly accumulated in cell. To this end, our work suggests that a combined transcriptional and post transcriptional control exists in rice to regulate GolS expression under stress. Concurrent detection and processing of prematurely terminating transcripts coupled to repressed splicing can be described as a form of Regulated Unproductive Splicing and Translation (RUST) and may be linked to the stress adaptation of the plant, which is an interesting future research possibility.


Assuntos
Galactosiltransferases/metabolismo , Genes de Plantas/fisiologia , Oryza/genética , Arabidopsis , Galactosiltransferases/genética , Galactosiltransferases/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Íntrons/genética , Íntrons/fisiologia , Oryza/enzimologia , Oryza/fisiologia , Plantas Geneticamente Modificadas , Processamento Pós-Transcricional do RNA/genética , Processamento Pós-Transcricional do RNA/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Estresse Fisiológico
6.
Front Plant Sci ; 6: 656, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26379684

RESUMO

Abiotic stress induces differential expression of genes responsible for the synthesis of raffinose family of oligosaccharides (RFOs) in plants. RFOs are described as the most widespread D-galactose containing oligosaccharides in higher plants. Biosynthesis of RFOs begin with the activity of galactinol synthase (GolS; EC 2.4.1.123), a GT8 family glycosyltransferase that galactosylates myo-inositol to produce galactinol. Raffinose and the subsequent higher molecular weight RFOs (Stachyose, Verbascose, and Ajugose) are synthesized from sucrose by the subsequent addition of activated galactose moieties donated by Galactinol. Interestingly, GolS, the key enzyme of this pathway is functional only in the flowering plants. It is thus assumed that RFO synthesis is a specialized metabolic event in higher plants; although it is not known whether lower plant groups synthesize any galactinol or RFOs. In higher plants, several functional importance of RFOs have been reported, e.g., RFOs protect the embryo from maturation associated desiccation, are predominant transport carbohydrates in some plant families, act as signaling molecule following pathogen attack and wounding and accumulate in vegetative tissues in response to a range of abiotic stresses. However, the loss-of-function mutants reported so far fail to show any perturbation in those biological functions. The role of RFOs in biotic and abiotic stress is therefore still in debate and their specificity and related components remains to be demonstrated. The present review discusses the biology and stress-linked regulation of this less studied extension of inositol metabolic pathway.

7.
FEBS Lett ; 586(10): 1488-96, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22673515

RESUMO

Galactinol synthase (GolS), a GT8 family glycosyltransferase, synthesizes galactinol and raffinose series of oligosaccharides (RFOs). Identification and analysis of conserved domains in GTs among evolutionarily diverse taxa, structure prediction by homology modeling and determination of substrate binding pocket followed by phylogenetic analysis of GolS sequences establish presence of functional GolS predominantly in higher plants, fungi having the closest possible ancestral sequences. Evolutionary preference for a functional GolS expression in higher plants might have arisen in response to the need for galactinol and RFO synthesis to combat abiotic stress, in contrast to other organisms lacking functional GolS for such functions.


Assuntos
Evolução Biológica , Galactosiltransferases/metabolismo , Plantas/enzimologia , Sequência de Aminoácidos , Galactosiltransferases/química , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Filogenia , Plantas/classificação , Plantas/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA