Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Antioxidants (Basel) ; 12(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37759975

RESUMO

We recently developed a combination of four chemiluminescence-based assays for selective detection of different nitric oxide (NO) metabolites, including nitrite, S-nitrosothiols (SNOs), heme-nitrosyl (heme-NO), and dinitrosyl iron complexes (DNICs). However, these NO species (NOx) may be under dynamic equilibria during sample handling, which affects the final determination made from the readout of assays. Using fetal and maternal sheep from low and high altitudes (300 and 3801 m, respectively) as models of different NOx levels and compositions, we tested the hypothesis that sample handling introduces artifacts in chemiluminescence assays of NOx. Here, we demonstrate the following: (1) room temperature placement is associated with an increase and decrease in NOx in plasma and whole blood samples, respectively; (2) snap freezing and thawing lead to the interconversion of different NOx in plasma; (3) snap freezing and homogenization in liquid nitrogen eliminate a significant fraction of NOx in the aorta of stressed animals; (4) A "stop solution" commonly used to preserve nitrite and SNOs leads to the interconversion of different NOx in blood, while deproteinization results in a significant increase in detectable NOx; (5) some reagents widely used in sample pretreatments, such as mercury chloride, acid sulfanilamide, N-ethylmaleimide, ferricyanide, and anticoagulant ethylenediaminetetraacetic acid, have unintended effects that destabilize SNO, DNICs, and/or heme-NO; (6) blood, including the residual blood clot left in the washed purge vessel, quenches the signal of nitrite when using ascorbic acid and acetic acid as the purge vessel reagent; and (7) new limitations to the four chemiluminescence-based assays. This study points out the need for re-evaluation of previous chemiluminescence measurements of NOx, and calls for special attention to be paid to sample handling, as it can introduce significant artifacts into NOx assays.

4.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36982960

RESUMO

Nitric oxide (NO) is a gasotransmitter that avidly binds both free and heme-bound iron, forming relatively stable iron nitrosyl compounds (FeNOs). We have previously demonstrated that FeNOs are present in the human placenta and are elevated in preeclampsia and intrauterine growth restriction. The ability of NO to sequester iron raises the possibility of the NO-mediated disruption of iron homeostasis in the placenta. In this work, we tested whether exposure of placental syncytiotrophoblasts or villous tissue explants to sub-cytotoxic concentrations of NO would elicit the formation of FeNOs. Furthermore, we measured changes in the mRNA and protein expression levels of key iron regulatory genes in response to NO exposure. Ozone-based chemiluminescence was used to measure concentrations of NO and its metabolites. Our results showed a significant increase in FeNO levels in placental cells and explants treated with NO (p < 0.0001). The mRNA and protein levels of HO-1 were significantly increased in both cultured syncytiotrophoblasts and villous tissue explants (p < 0.01), and the mRNA levels of hepcidin and transferrin receptor were significantly increased in culture syncytiotrophoblasts and villous tissue explants, respectively, (p < 0.01), while no changes were seen in the expression levels of divalent metal transporter-1 or ferroportin. These results suggest a potential role for NO in iron homeostasis in the human placenta and could be relevant for disorders of pregnancy such as fetal growth restriction and preeclampsia.


Assuntos
Placenta , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Placenta/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Transferrina/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Óxido Nítrico/metabolismo , Pré-Eclâmpsia/metabolismo , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Ferro/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
J Biol Chem ; 298(7): 102078, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35643317

RESUMO

Placental nitric oxide (NO) is critical for maintaining perfusion in the maternal-fetal-placental circulation during normal pregnancy. NO and its many metabolites are also increased in pregnancies complicated by maternal inflammation such as preeclampsia, fetal growth restriction, gestational diabetes, and bacterial infection. However, it is unclear how increased levels of NO or its metabolites affect placental function or how the placenta deals with excessive levels of NO or its metabolites. Since there is uncertainty over the direction of change in plasma levels of NO metabolites in preeclampsia, we measured the levels of these metabolites at the placental tissue level. We found that NO metabolites are increased in placentas from patients with preeclampsia compared to healthy controls. We also discovered by ozone-based chemiluminescence and electron paramagnetic resonance that nitrite is efficiently converted into iron nitrosyl complexes (FeNOs) within the human placenta and also observed the existence of endogenous FeNOs within placentas from sheep and rats. We show these nitrite-derived FeNOs are relatively short-lived, predominantly protein-bound, heme-FeNOs. The efficient formation of FeNOs from nitrite in the human placenta hints toward the importance of both nitrite and FeNOs in placental physiology or pathology. As iron nitrosylation is an important posttranslational modification that affects the activity of multiple iron-containing proteins such as those in the electron transport chain, or those involved in epigenetic regulation, we conclude that FeNOs merit increased study in pregnancy complications.


Assuntos
Nitritos , Pré-Eclâmpsia , Animais , Epigênese Genética , Feminino , Humanos , Ferro/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Óxidos de Nitrogênio , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Gravidez , Ratos , Ovinos
6.
Free Radic Biol Med ; 160: 458-470, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32828952

RESUMO

Deferoxamine (DFO), an iron chelator, is used therapeutically for the removal of excess iron in multiple clinical conditions such as beta thalassemia and intracerebral hemorrhage. DFO is also used as an iron chelator and hypoxia-mimetic agent in in vivo and in vitro basic research. Here we unexpectedly discover DFO to be a nitric oxide (NO) precursor in experiments where it was intended to act as an iron chelator. Production of NO from aqueous solutions of DFO was directly observed by ozone-based chemiluminescence using a ferricyanide-based assay and was confirmed by electron paramagnetic resonance (EPR). DFO also produced NO following exposure to ultraviolet light, and its incubation with sheep adult and fetal blood resulted in considerable formation of iron nitrosyl hemoglobin, as confirmed by both visible spectroscopy and EPR. These results suggest that experiments using DFO can be confounded by concomitant production of NO, and offer new insight into some of DFO's unexplained clinical side effects such as hypotension.


Assuntos
Desferroxamina , Quelantes de Ferro , Animais , Ferricianetos , Óxido Nítrico , Ovinos , Raios Ultravioleta
7.
Am J Physiol Regul Integr Comp Physiol ; 319(4): R401-R411, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32813540

RESUMO

Circulating metabolites of nitric oxide, such as nitrite, iron nitrosyls (FeNO), and nitrosothiols, have vasodilatory bioactivity. In both human and sheep neonates, plasma concentrations of these NO metabolite (NOx) concentrations fall >50% within minutes after birth, raising the possibility that circulating NOx plays a role in maintaining low fetal vascular resistance and in the cardiovascular transition at birth. To test whether the fall in plasma NOx concentrations at birth is due to either ligation of the umbilical cord or oxygenation of the fetus to newborn levels, plasma NOx concentrations were measured during stepwise delivery of near-term fetal lambs. When fetal lambs were intubated and mechanically ventilated with 100% O2 to oxygenate the arterial blood while still in utero with the umbilical circulation still intact, there was no change in plasma NOx levels. In contrast, when the umbilical cord was ligated while fetal lambs were mechanically ventilated with O2 levels that maintained fetal arterial blood gases, plasma NOx levels decreased by nearly 50%. Characterization of the individual NOx species in plasma revealed that the overall fall in NOx at birth was attributable mainly to FeNO compounds. Finally, when the typical fall in NOx after birth was prevented by intravenous nitrite infusion, birth-related changes in blood pressure, heart rate, and carotid flow changes were little affected, suggesting the cardiovascular transition at birth is not dependent on a fall in plasma NOx. In conclusion, this study shows FeNO is released from the placenta and that its decline accounts for most of the measured fall in plasma NOx at birth.


Assuntos
Sangue Fetal/metabolismo , Ferro/sangue , Nitritos/metabolismo , Óxidos de Nitrogênio/sangue , Parto/fisiologia , Placenta/metabolismo , Animais , Sistema Cardiovascular/metabolismo , Feminino , Óxido Nítrico/metabolismo , Gravidez , Ovinos
8.
J Physiol ; 598(11): 2223-2241, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32118291

RESUMO

KEY POINTS: Nitric oxide (NO) is a gasotransmitter with important physiological and pathophysiological roles in pregnancy. There is limited information available about the sources and metabolism of NO and its bioactive metabolites (NOx) in both normal and complicated pregnancies. The present study characterized and quantified endogenous NOx in human and mouse placenta following determination of the stability of exogenous NOx in placental homogenates. NOx have differential stability in placental homogenates. NO and iron nitrosyl species (FeNOs), are relatively unstable in placental homogenates from normal placentas. Exogenous NO, nitrite and nitrosothiols react with placental homogenates to form iron nitrosyl complexes. FeNOs were also detected endogenously in mouse and human placenta. NOx levels in placental villous tissue are increased in fetal growth restriction vs. placentas from women with normal pregnancies, particularly in fetal growth restriction associated with pre-eclampsia. Villitis was not associated, however, with an increase in NOx levels in either normotensive or pre-eclamptic placentas. The results call for further investigation of FeNOs in normal and complicated pregnancies. ABSTRACT: Nitric oxide (NO) is a gasotransmitter with important roles in pregnancy under both physiological and pathophysiological conditions. Although products of NO metabolism (NOx) also have significant bioactivity, little is known about the role of NO and NOx under conditions of aberrant placental inflammation during pregnancy. An ozone-based chemiluminescence approach was used to investigate the stability and metabolic fate of NOx in human placental homogenates from uncomplicated pregnancies in healthy mothers compared to that in placental tissue from normotensive and pre-eclamptic pregnancies complicated with fetal growth restriction (FGR) with and without villitis of unknown aetiology. We hypothesized that placental NOx would be increased in FGR vs. normal tissue, and be further increased in villitis vs. non-villitis placentas. Findings indicate that nitrate, nitrite and nitrosothiols, but not NO or iron nitrosyl species (FeNOs), are relatively stable in placental homogenates from normal placentas, and that NO, nitrite and nitrosothiols react with placental homogenates to form iron nitrosyl complexes. Furthermore, NOx levels in placental villous tissue are increased in FGR vs. placentas from women with normal pregnancies, particularly in FGR associated with pre-eclampsia. However, in contrast to our hypothesis, villitis was not associated with an increase in NOx levels in either normotensive or pre-eclamptic placentas. Our results also strongly support the involvement of FeNOs in both mouse and human placenta, and call for their further study as a critical mechanistic link between pre-eclampsia and fetal growth restriction.


Assuntos
Óxido Nítrico , Pré-Eclâmpsia , Animais , Feminino , Retardo do Crescimento Fetal , Humanos , Inflamação , Camundongos , Placenta , Gravidez
9.
Nitric Oxide ; 95: 29-44, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31870965

RESUMO

The gasotransmitters, nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO), are endogenously-produced volatile molecules that perform signaling functions throughout the body. In biological tissues, these small, lipid-permeable molecules exist in free gaseous form for only seconds or less, and thus they are ideal for paracrine signaling that can be controlled rapidly by changes in their rates of production or consumption. In addition, tissue concentrations of the gasotransmitters are influenced by fluctuations in the level of O2 and reactive oxygen species (ROS). The normal transition from fetus to newborn involves a several-fold increase in tissue O2 tensions and ROS, and requires rapid morphological and functional adaptations to the extrauterine environment. This review summarizes the role of gasotransmitters as it pertains to newborn physiology. Particular focus is given to the vasculature, ventilatory, and gastrointestinal systems, each of which uniquely illustrate the function of gasotransmitters in the birth transition and newborn periods. Moreover, given the relative lack of studies on the role that gasotransmitters play in the newborn, particularly that of H2S and CO, important gaps in knowledge are highlighted throughout the review.


Assuntos
Monóxido de Carbono/metabolismo , Gasotransmissores/metabolismo , Sulfeto de Hidrogênio/metabolismo , Recém-Nascido/fisiologia , Óxido Nítrico/metabolismo , Animais , Humanos , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
10.
Redox Biol ; 26: 101238, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31200239

RESUMO

L-NG-Nitro arginine methyl ester (L-NAME) has been widely applied for several decades in both basic and clinical research as an antagonist of nitric oxide synthase (NOS). Herein, we show that L-NAME slowly releases NO from its guanidino nitro group. Daily pretreatment of rats with L-NAME potentiated mesenteric vasodilation induced by nitrodilators such as nitroglycerin, but not by NO. Release of NO also occurred with the NOS-inactive enantiomer D-NAME, but not with L-arginine or another NOS inhibitor L-NMMA, consistent with the presence or absence of a nitro group in their structure and their nitrodilator-potentiating effects. Metabolic conversion of the nitro group to NO-related breakdown products was confirmed using isotopically-labeled L-NAME. Consistent with Fenton chemistry, transition metals and reactive oxygen species accelerated the release of NO from L-NAME. Both NO production from L-NAME and its nitrodilator-potentiating effects were augmented under inflammation. NO release by L-NAME can confound its intended NOS-inhibiting effects, possibly by contributing to a putative intracellular NO store in the vasculature.


Assuntos
Inibidores Enzimáticos/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Nitroglicerina/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Arginina/farmacologia , Feminino , Artérias Mesentéricas/efeitos dos fármacos , Camundongos , Miografia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Ovinos , Estereoisomerismo , Vasodilatação/fisiologia , ômega-N-Metilarginina/farmacologia
11.
European J Org Chem ; 2019(38): 6496-6503, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33041648

RESUMO

Rapid and reproducible access to a series of unique porphyrin and bacteriochlorin glycoconjugates, including meso-glycosylated porphyrins and bacteriochlorins, and beta-glycosylated porphyrins, via copper catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) is reported for the first time. The work presented highlights the system-dependent reaction conditions required for glycosylation to porphyrins and bacteriochlorins based on the unique electronic properties of each ring system. Attenuated reaction conditions were used to synthesize fifteen new glycosylated porphyrin and bacteriochlorin analogs in 74 - 99% yield, and were extended to solid support to produce the first oligo(amidoamine)-based porphyrin glycoconjugate. These compounds hold significant potential as next generation water soluble catalysts and photodynamic therapy/photodynamic inactivation (PDT/PDI) agents.

12.
Nitric Oxide ; 79: 57-67, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30059767

RESUMO

Dinitrosyl iron complexes (DNICs) are important intermediates in the metabolism of nitric oxide (NO). They have been considered to be NO storage adducts able to release NO, scavengers of excess NO during inflammatory hypotensive shock, and mediators of apoptosis in cancer cells, among many other functions. Currently, all studies of DNICs in biological matrices use electron paramagnetic resonance (EPR) for both detection and quantification. EPR is limited, however, by its ability to detect only paramagnetic mononuclear DNICs even though EPR-silent binuclear are likely to be prevalent. Furthermore, physiological concentrations of mononuclear DNICs are usually lower than the EPR detection limit (1 µM). We have thus developed a chemiluminescence-based method for the selective detection of both DNIC forms at physiological, pathophysiological, and pharmacologic conditions. We have also demonstrated the use of the new method in detecting DNIC formation in the presence of nitrite and nitrosothiols within biological fluids and tissue. This new method, which can be used alone or in tandem with EPR, has the potential to offer insight about the involvement of DNICs in many NO-dependent pathways.


Assuntos
Ferro/análise , Luminescência , Óxidos de Nitrogênio/análise , Ozônio/química , Animais , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA