Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 40(43): 11480-9, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-21952819

RESUMO

A combined electrochemical method and X-ray photo electron spectroscopy (XPS) has been utilized to understand the Pd(2+)/CeO(2) interaction in Ce(1-x)Pd(x)O(2-δ) (x = 0.02). A constant positive potential (chronoamperometry) is applied to Ce(0.98)Pd(0.02)O(2-δ) working electrode which causes Ce(4+) to reduce to Ce(3+) to the extent of ~35%, while Pd remains in the +2 oxidation state. Electrochemically cycling this electrode between 0.0-1.2 V reverts back to the original state of the catalyst. This reversibility is attributed to the reversible reduction of Ce(4+) to Ce(3+) state. CeO(2) electrode with no metal component reduces to CeO(2-y) (y~0.4) after applying 1.2 V which is not reversible and the original composition of CeO(2) cannot be brought back in any electrochemical condition. During the electro-catalytic oxygen evolution reaction at a constant 1.2 V for 1000 s, Ce(0.98)Pd(0.02)O(2-δ) reaches a steady state composition with Pd in the +2 states and Ce(4+): Ce(3+) in the ratio of 0.65:0.35. This composition can be denoted as Ce(4+)(0.63)Ce(3+)(0.35)Pd(0.02)O(2-δ-y) (y~0.17). When pure CeO(2) is put under similar electrochemical condition, it never reaches the steady state composition and reduces almost to 85%. Thus, Ce(0.98)Pd(0.02)O(2-δ) forms a stable electrode for the electro-oxidation of H(2)O to O(2) unlike CeO(2) due to the metal support interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA