Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Immunother Cancer ; 11(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37802604

RESUMO

BACKGROUND: Adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TILs) is a promising immunotherapeutic approach for patients with advanced solid tumors. While numerous advances have been made, the contribution of neoantigen-specific CD4+T cells within TIL infusion products remains underexplored and therefore offers a significant opportunity for progress. METHODS: We analyzed infused TIL products from metastatic melanoma patients previously treated with ACT for the presence of neoantigen-specific T cells. TILs were enriched on reactivity to neoantigen peptides derived and prioritized from patient sample-directed mutanome analysis. Enriched TILs were further investigated to establish the clonal neoantigen response with respect to function, transcriptomics, and persistence following ACT. RESULTS: We discovered that neoantigen-specific TIL clones were predominantly CD4+ T cells and were present in both therapeutic responders and non-responders. CD4+ TIL demonstrated an effector T cell response with cytotoxicity toward autologous tumor in a major histocompatibility complex class II-dependent manner. These results were validated by paired TCR and single cell RNA sequencing, which elucidated transcriptomic profiles distinct to neoantigen-specific CD4+ TIL. CONCLUSIONS: Despite methods which often focus on CD8+T cells, our study supports the importance of prospective identification of neoantigen-specific CD4+ T cells within TIL products as they are a potent source of tumor-specific effectors. We further advocate for the inclusion of neoantigen-specific CD4+ TIL in future ACT protocols as a strategy to improve antitumor immunity.


Assuntos
Linfócitos do Interstício Tumoral , Melanoma , Humanos , Imunoterapia Adotiva/métodos , Estudos Prospectivos , Linfócitos T CD4-Positivos
2.
J Immunother Cancer ; 11(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37185232

RESUMO

INTRODUCTION: In clear cell renal cell carcinoma (ccRCC), tumor-associated macrophage (TAM) induction of CD8+T cells into a terminally exhausted state has been implicated as a major mechanism of immunotherapy resistance, but a deeper biological understanding is necessary. METHODS: Primary ccRCC tumor samples were obtained from 97 patients between 2004 and 2018. Multiplex immunofluorescence using lymphoid and myeloid markers was performed in seven regions of interest per patient across three predefined zones, and geospatial analysis was performed using Ripley's K analysis, a methodology adapted from ecology. RESULTS: Clustering of CD163+M2 like TAMs into the stromal compartment at the tumor-stroma interface was associated with worse clinical stage (tumor/CD163+nK(75): stage I/II: 4.4 (IQR -0.5 to 5.1); stage III: 1.4 (IQR -0.3 to 3.5); stage IV: 0.6 (IQR -2.1 to 2.1); p=0.04 between stage I/II and stage IV), and worse overall survival (OS) and cancer-specific survival (CSS) (tumor/CD163+nK(75): median OS-hi=149 months, lo=86 months, false-discovery rate (FDR)-adj. Cox p<0.001; median CSS-hi=174 months, lo=85 months; FDR-adj. Cox p<0.001). An RNA-seq differential gene expression score was developed using this geospatial metric, and was externally validated in multiple independent cohorts of patients with ccRCC including: TCGA KIRC, and the IMmotion151, IMmotion150, and JAVELIN Renal 101 clinical trials. In addition, this CD163+ geospatial pattern was found to be associated with a higher TIM-3+ proportion of CD8+T cells, indicative of terminal exhaustion (tumor-core: 0.07 (IQR 0.04-0.14) vs 0.40 (IQR 0.15-0.66), p=0.05). CONCLUSIONS: Geospatial clustering of CD163+M2 like TAMs into the stromal compartment at the tumor-stromal interface was associated with poor clinical outcomes and CD8+T cell terminal exhaustion.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Prognóstico , Linfócitos T CD8-Positivos , Microambiente Tumoral
3.
Cancers (Basel) ; 15(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36980641

RESUMO

Although Ipilimumab (anti-CTLA-4) is FDA-approved for stage III/IV melanoma adjuvant treatment, it is not used clinically in first-line therapy, given the superior relapse-free survival (RFS)/toxicity benefits of anti-PD-1 therapy. However, it is important to understand anti-CTLA-4's mechanistic contribution to combination anti-PD-1/CTLA-4 therapy and investigate anti-CTLA-4 therapy for BRAF-wild type melanoma cases reresected after previous adjuvant anti-PD-1 therapy. Our group published that nitric oxide (NO) increased within the immune effector cells among patients with longer RFS after adjuvant ipilimumab, whereas NO increased within the immune suppressor cells among patients with shorter RFS. Herein, we measured the post-translational modifications of STAT1 (nitration-nSTAT1 and phosphorylation-pSTAT1) that are important for regulating its activity via flow cytometry and mass spectrometry approaches. PBMCs were analyzed from 35 patients undergoing adjuvant ipilimumab treatment. Shorter RFS was associated with higher pSTAT1 levels before (p = 0.007) and after (p = 0.036) ipilimumab. Ipilimumab-treated patients with high nSTAT1 levels before and after therapy in PBMCs experienced decreased RFS, but the change in nSTAT1 levels before and after ipilimumab therapy was associated with longer RFS (p = 0.01). The measurement of post-translational modifications in STAT1 may distinguish patients with prolonged RFS from ipilimumab and provide mechanistic insight into responses to ipilimumab combination regimens.

4.
Nat Commun ; 14(1): 1573, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949064

RESUMO

While STING-activating agents have shown limited efficacy in early-phase clinical trials, multiple lines of evidence suggest the importance of tumor cell-intrinsic STING function in mediating antitumor immune responses. Although STING signaling is impaired in human melanoma, its restoration through epigenetic reprogramming can augment its antigenicity and T cell recognition. In this study, we show that reversal of methylation silencing of STING in murine melanoma cell lines using a clinically available DNA methylation inhibitor can improve agonist-induced STING activation and type-I IFN induction, which, in tumor-bearing mice, can induce tumor regression through a CD8+ T cell-dependent immune response. These findings not only provide mechanistic insight into how STING signaling dysfunction in tumor cells can contribute to impaired responses to STING agonist therapy, but also suggest that pharmacological restoration of STING signaling through epigenetic reprogramming might improve the therapeutic efficacy of STING agonists.


Assuntos
Antineoplásicos , Interferon Tipo I , Melanoma , Animais , Camundongos , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Imunidade , Interferon Tipo I/metabolismo , Epigênese Genética
5.
Clin Cancer Res ; 28(24): 5317-5329, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36215121

RESUMO

PURPOSE: Metastatic melanoma is a tumor amenable to immunotherapy in part due to the presence of antigen-specific tumor-infiltrating lymphocytes (TIL). These T cells can be activated and expanded for adoptive cell transfer (ACT), which has resulted in relatively high rates of clinical responses. Similarly, immune checkpoint inhibitors, specifically programmed cell death protein 1 (PD-1) blocking antibodies, augment antitumor immunity and increase the influx of T cells into tumors. Thus, we hypothesized that addition of PD-1 inhibition may improve the outcomes for patients undergoing ACT with TILs. PATIENTS AND METHODS: Patients with stage III/IV metastatic melanoma with unresectable disease who were anti-PD-1 treatment-naïve were enrolled. TILs were generated in the presence of anti-4-1BB antibody in vitro and expanded for ACT. Patients in cohort 1 received TIL infusion followed by nivolumab. Patients in cohort 2 also received nivolumab prior to surgical harvest and during TIL production. RESULTS: A total of 11 patients were enrolled, all of whom were evaluated for response, and nine completed ACT. Predominantly CD8+ TILs were successfully expanded from all ACT-treated patients and were tumor reactive in vitro. The trial met its safety endpoint, as there were no protocol-defined dose-limiting toxicity events. The objective response rate was 36%, and median progression-free survival was 5 months. Two nonresponders who developed new metastatic lesions were analyzed to determine potential mechanisms of therapeutic resistance, which included clonal divergence and intrinsic TIL dysfunction. CONCLUSIONS: Combination therapy with TILs and nivolumab was safe and feasible for patients with metastatic melanoma and provides important insights for future therapeutic developments in ACT with TILs.


Assuntos
Melanoma , Segunda Neoplasia Primária , Humanos , Terapia Baseada em Transplante de Células e Tecidos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Linfócitos do Interstício Tumoral , Melanoma/tratamento farmacológico , Nivolumabe , Melanoma Maligno Cutâneo
6.
Int J Radiat Oncol Biol Phys ; 113(3): 635-647, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35289298

RESUMO

PURPOSE: Radiation therapy (RT) is a mainstay of cancer care, and accumulating evidence suggests the potential for synergism with components of the immune response. However, few data describe the tumor immune contexture in relation to RT sensitivity. To address this challenge, we used the radiation sensitivity index (RSI) gene signature to estimate the RT sensitivity of >10,000 primary tumors and characterized their immune microenvironments in relation to the RSI. METHODS AND MATERIALS: We analyzed gene expression profiles of 10,469 primary tumors (31 types) within a prospective tissue collection protocol. The RT sensitivity of each tumor was estimated by the RSI and respective distributions were characterized. The tumor biology measured by the RSI was evaluated by differentially expressed genes combined with single sample gene set enrichment analysis. Differences in the expression of immune regulatory molecules were assessed and deconvolution algorithms were used to estimate immune cell infiltrates in relation to the RSI. A subset (n = 2368) of tumors underwent DNA sequencing for mutational frequency characterization. RESULTS: We identified a wide range of RSI values within and across various tumor types, with several demonstrating nonunimodal distributions (eg, colon, renal, lung, prostate, esophagus, pancreas, and PAM50 breast subtypes; P < .05). Across all tumor types, stratifying RSI at a tumor type-specific median identified 7148 differentially expressed genes, of which 146 were coordinate in direction. Network topology analysis demonstrates RSI measures a coordinated STAT1, IRF1, and CCL4/MIP-1ß transcriptional network. Tumors with an estimated high sensitivity to RT demonstrated distinct enrichment of interferon-associated signaling pathways and immune cell infiltrates (eg, CD8+ T cells, activated natural killer cells, M1-macrophages; q < 0.05), which was in the context of diverse expression patterns of various immunoregulatory molecules. CONCLUSIONS: This analysis describes the immune microenvironments of patient tumors in relation to the RSI gene expression signature.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias/genética , Neoplasias/radioterapia , Prognóstico , Tolerância a Radiação/genética , Transcriptoma , Microambiente Tumoral/genética
7.
Cancer Discov ; 12(5): 1294-1313, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35247891

RESUMO

ABSTRACT: Cutaneous T-cell lymphoma (CTCL) is a rare cancer of skin-homing T cells. A subgroup of patients develops large cell transformation with rapid progression to an aggressive lymphoma. Here, we investigated the transformed CTCL (tCTCL) tumor ecosystem using integrative multiomics spanning whole-exome sequencing (WES), single-cell RNA sequencing, and immune profiling in a unique cohort of 56 patients. WES of 70 skin biopsies showed high tumor mutation burden, UV signatures that are prognostic for survival, exome-based driver events, and most recurrently mutated pathways in tCTCL. Single-cell profiling of 16 tCTCL skin biopsies identified a core oncogenic program with metabolic reprogramming toward oxidative phosphorylation (OXPHOS), cellular plasticity, upregulation of MYC and E2F activities, and downregulation of MHC I suggestive of immune escape. Pharmacologic perturbation using OXPHOS and MYC inhibitors demonstrated potent antitumor activities, whereas immune profiling provided in situ evidence of intercellular communications between malignant T cells expressing macrophage migration inhibitory factor and macrophages and B cells expressing CD74. SIGNIFICANCE: Our study contributes a key resource to the community with the largest collection of tCTCL biopsies that are difficult to obtain. The multiomics data herein provide the first comprehensive compendium of genomic alterations in tCTCL and identify potential prognostic signatures and novel therapeutic targets for an incurable T-cell lymphoma. This article is highlighted in the In This Issue feature, p. 1171.


Assuntos
Linfoma Cutâneo de Células T , Neoplasias Cutâneas , Transformação Celular Neoplásica , Ecossistema , Genômica , Humanos , Linfoma Cutâneo de Células T/tratamento farmacológico , Linfoma Cutâneo de Células T/genética , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo
8.
Clin Cancer Res ; 28(9): 1911-1924, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35190823

RESUMO

PURPOSE: Adoptive cell therapy (ACT) of tumor-infiltrating lymphocytes (TIL) historically yields a 40%-50% response rate in metastatic melanoma. However, the determinants of outcome are largely unknown. EXPERIMENTAL DESIGN: We investigated tumor-based genomic correlates of overall survival (OS), progression-free survival (PFS), and response to therapy by interrogating tumor samples initially collected to generate TIL infusion products. RESULTS: Whole-exome sequencing (WES) data from 64 samples indicated a positive correlation between neoantigen load and OS, but not PFS or response to therapy. RNA sequencing analysis of 34 samples showed that expression of PDE1C, RTKN2, and NGFR was enriched in responders who had improved PFS and OS. In contrast, the expression of ELFN1 was enriched in patients with unfavorable response, poor PFS and OS, whereas enhanced methylation of ELFN1 was observed in patients with favorable outcomes. Expression of ELFN1, NGFR, and PDE1C was mainly found in cancer-associated fibroblasts and endothelial cells in tumor tissues across different cancer types in publicly available single-cell RNA sequencing datasets, suggesting a role for elements of the tumor microenvironment in defining the outcome of TIL therapy. CONCLUSIONS: Our findings suggest that transcriptional features of melanomas correlate with outcomes after TIL therapy and may provide candidates to guide patient selection.


Assuntos
Melanoma , Segunda Neoplasia Primária , Terapia Baseada em Transplante de Células e Tecidos , Células Endoteliais/patologia , Genômica , Humanos , Imunoterapia Adotiva , Linfócitos do Interstício Tumoral , Melanoma/genética , Melanoma/terapia , Segunda Neoplasia Primária/patologia , Microambiente Tumoral/genética
9.
Cancer Res ; 82(5): 929-942, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35031572

RESUMO

Immune-modulating systemic therapies are often used to treat advanced cancer such as metastatic clear cell renal cell carcinoma (ccRCC). Used alone, sequence-based biomarkers neither accurately capture patient dynamics nor the tumor immune microenvironment. To better understand the tumor ecology of this immune microenvironment, we quantified tumor infiltration across three distinct ccRCC patient tumor cohorts using complementarity determining region-3 (CDR3) sequence recovery counts in tumor-infiltrating lymphocytes and a generalized diversity index (GDI) for CDR3 sequence distributions. GDI can be understood as a curve over a continuum of diversity scales that allows sensitive characterization of distributions to capture sample richness, evenness, and subsampling uncertainty, along with other important metrics that characterize tumor heterogeneity. For example, richness quantified the total unique sequence count, while evenness quantified similarities across sequence frequencies. Significant differences in receptor sequence diversity across gender and race revealed that patients with larger and more clinically aggressive tumors had increased richness of recovered tumoral CDR3 sequences, specifically in those from T-cell receptor alpha and B-cell immunoglobulin lambda light chain. The GDI inflection point (IP) allowed for a novel and robust measure of distribution evenness. High IP values were associated with improved overall survival, suggesting that normal-like sequence distributions lead to better outcomes. These results propose a new quantitative tool that can be used to better characterize patient-specific differences related to immune cell infiltration, and to identify unique characteristics of tumor-infiltrating lymphocyte heterogeneity in ccRCC and other malignancies. SIGNIFICANCE: Assessment of tumor-infiltrating T-cell and B-cell diversity in renal cell carcinoma advances the understanding of tumor-immune system interactions, linking tumor immune ecology with tumor burden, aggressiveness, and patient survival. See related commentary by Krishna and Hakimi, p. 764.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/patologia , Feminino , Humanos , Linfócitos do Interstício Tumoral , Masculino , Prognóstico , Receptores de Antígenos de Linfócitos B , Receptores de Antígenos de Linfócitos T alfa-beta , Microambiente Tumoral
10.
Neoplasia ; 23(11): 1110-1122, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34619428

RESUMO

Radiotherapy efficacy is the result of radiation-mediated cytotoxicity coupled with stimulation of antitumor immune responses. We develop an in silico 3-dimensional agent-based model of diverse tumor-immune ecosystems (TIES) represented as anti- or pro-tumor immune phenotypes. We validate the model in 10,469 patients across 31 tumor types by demonstrating that clinically detected tumors have pro-tumor TIES. We then quantify the likelihood radiation induces antitumor TIES shifts toward immune-mediated tumor elimination by developing the individual Radiation Immune Score (iRIS). We show iRIS distribution across 31 tumor types is consistent with the clinical effectiveness of radiotherapy, and in combination with a molecular radiosensitivity index (RSI) combines to predict pan-cancer radiocurability. We show that iRIS correlates with local control and survival in a separate cohort of 59 lung cancer patients treated with radiation. In combination, iRIS and RSI predict radiation-induced TIES shifts in individual patients and identify candidates for radiation de-escalation and treatment escalation. This is the first clinically and biologically validated computational model to simulate and predict pan-cancer response and outcomes via the perturbation of the TIES by radiotherapy.


Assuntos
Biomarcadores/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , Linfócitos do Interstício Tumoral/imunologia , Tolerância a Radiação/genética , Microambiente Tumoral , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/radioterapia , Prognóstico , Tolerância a Radiação/imunologia , Radioterapia , Taxa de Sobrevida
11.
Cancers (Basel) ; 13(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34359645

RESUMO

Cancer-associated fibroblasts (CAF) are highly prevalent cells in the tumor microenvironment in clear cell renal cell carcinoma (ccRCC). CAFs exhibit a pro-tumor effect in vitro and have been implicated in tumor cell proliferation, metastasis, and treatment resistance. Our objective is to analyze the geospatial distribution of CAFs with proliferating and apoptotic tumor cells in the ccRCC tumor microenvironment and determine associations with survival and systemic treatment. Pre-treatment primary tumor samples were collected from 96 patients with metastatic ccRCC. Three adjacent slices were obtained from 2 tumor-core regions of interest (ROI) per patient, and immunohistochemistry (IHC) staining was performed for αSMA, Ki-67, and caspase-3 to detect CAFs, proliferating cells, and apoptotic cells, respectively. H-scores and cellular density were generated for each marker. ROIs were aligned, and spatial point patterns were generated, which were then used to perform spatial analyses using a normalized Ripley's K function at a radius of 25 µm (nK(25)). The survival analyses used an optimal cut-point method, maximizing the log-rank statistic, to stratify the IHC-derived metrics into high and low groups. Multivariable Cox regression analyses were performed accounting for age and International Metastatic RCC Database Consortium (IMDC) risk category. Survival outcomes included overall survival (OS) from the date of diagnosis, OS from the date of immunotherapy initiation (OS-IT), and OS from the date of targeted therapy initiation (OS-TT). Therapy resistance was defined as progression-free survival (PFS) <6 months, and therapy response was defined as PFS >9 months. CAFs exhibited higher cellular clustering with Ki-67+ cells than with caspase-3+ cells (nK(25): Ki-67 1.19; caspase-3 1.05; p = 0.04). The median nearest neighbor (NN) distance from CAFs to Ki-67+ cells was shorter compared to caspase-3+ cells (15 µm vs. 37 µm, respectively; p < 0.001). Multivariable Cox regression analyses demonstrated that both high Ki-67+ density and H-score were associated with worse OS, OS-IT, and OS-TT. Regarding αSMA+CAFs, only a high H-score was associated with worse OS, OS-IT, and OS-TT. For caspase-3+, high H-score and density were associated with worse OS and OS-TT. Patients whose tumors were resistant to targeted therapy (TT) had higher Ki-67 density and H-scores than those who had TT responses. Overall, this ex vivo geospatial analysis of CAF distribution suggests that close proximity clustering of tumor cells and CAFs potentiates tumor cell proliferation, resulting in worse OS and resistance to TT in metastatic ccRCC.

12.
Front Immunol ; 12: 694079, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267760

RESUMO

There is emerging evidence that the adaptive anti-tumor activity may be orchestrated by secondary lymphoid organ-like aggregates residing in the tumor microenvironment. Known as tertiary lymphoid structures, these lymphoid aggregates serve as key outposts for lymphocyte recruitment, priming and activation. They have been linked to favorable outcomes in many tumor types, and more recently, have been shown to be effective predictors of response to immune checkpoint blockade. We have previously described a 12-chemokine (12-CK) transcriptional score which recapitulates an overwhelming enrichment for immune-related and inflammation-related genes in colorectal carcinoma. Subsequently, the 12-CK score was found to prognosticate favorable survival in multiple tumors types including melanoma, breast cancer, and bladder cancer. In the current study, we summarize the discovery and validation of the 12-CK score in various tumor types, its relationship to TLSs found within the tumor microenvironment, and explore its potential role as both a prognostic and predictive marker in the treatment of various cancers.


Assuntos
Biomarcadores Tumorais/genética , Quimiocinas/genética , Perfilação da Expressão Gênica , Neoplasias/genética , Estruturas Linfoides Terciárias/imunologia , Transcriptoma , Tomada de Decisão Clínica , Feminino , Humanos , Imunoterapia , Masculino , Neoplasias/imunologia , Neoplasias/terapia , Valor Preditivo dos Testes , Prognóstico , Microambiente Tumoral
13.
J Immunother Cancer ; 9(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34135102

RESUMO

BACKGROUND: The temporal response to checkpoint blockade (CB) is incompletely understood. Here, we profiled the tumor infiltrating lymphocyte (TIL) landscape in response to combination checkpoint blockade at two distinct timepoints of solid tumor growth. METHODS: C57BL/6 mice bearing subcutaneous MC38 tumors were treated with anti-PD-1 and/or anti-CTLA-4 antibodies. At 11 or 21 days, TIL phenotype and effector function were analyzed in excised tumor digests using high parameter flow cytometry. The contributions of major TIL populations toward overall response were then assessed using ex vivo cytotoxicity and in vivo tumor growth assays. RESULTS: The distribution and effector function among 37 distinct TIL populations shifted dramatically between early and late MC38 growth. At 11 days, the immune response was dominated by Tumor necrosis factor alpha (TNFα)-producing NKT, representing over half of all TIL. These were accompanied by modest frequencies of natural killer (NK), CD4+, or CD8+ T cells, producing low levels of IFN-γ. At 21 days, NKT populations were reduced to a combined 20% of TIL, giving way to increased NK, CD4+, and CD8+ T cells, with increased IFN-γ production. Treatment with CB accelerated this switch. At day 11, CB reduced NKT to less than 20% of all TIL, downregulated TNFα across NKT and CD4+ T cell populations, increased CD4+ and CD8+ TIL frequencies, and significantly upregulated IFN-γ production. Degranulation was largely associated with NK and NKT TIL. Blockade of H-2kb and/or CD1d during ex vivo cytotoxicity assays revealed NKT has limited direct cytotoxicity against parent MC38. However, forced CD1d overexpression in MC38 cells significantly diminished tumor growth, suggesting NKT TIL exerts indirect control over MC38 growth. CONCLUSIONS: Despite an indirect benefit of early NKT activity, CB accelerates a switch from TNFα, NKT-driven immune response toward an IFN-γ driven CD4+/CD8+ T cell response in MC38 tumors. These results uncover a novel NKT/T cell switch that may be a key feature of CB response in CD1d+ tumors.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Interferon gama/metabolismo , Linfócitos T/metabolismo , Microambiente Tumoral/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos
14.
Nat Rev Urol ; 18(9): 543-555, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34183833

RESUMO

The advent of immune checkpoint inhibition (ICI) has transformed the treatment paradigm for bladder cancer. However, despite the success of ICI in other tumour types, the majority of ICI-treated patients with bladder cancer failed to respond. The lack of efficacy in some patients could be attributed to a paucity of pre-existing immune reactive cells within the tumour immune microenvironment, which limits the beneficial effects of ICI. In this setting, strategies to attract lymphocytes before implementation of ICI could be helpful. Oncolytic virotherapy is thought to induce the release of damage-associated molecular patterns, eliciting a pro-inflammatory cytokine cascade and stimulating the activation of the innate immune system. Concurrently, oncolytic virotherapy-induced oncolysis leads to further release of neoantigens and subsequent epitope spreading, culminating in a robust, tumour-specific adaptive immune response. Combination therapy using oncolytic virotherapy with ICI has proven successful in a number of preclinical studies and is beginning to enter clinical trials for the treatment of both non-muscle-invasive and muscle-invasive bladder cancer. In this context, understanding of the mechanisms underpinning oncolytic virotherapy and its potential synergism with ICI will enable clinicians to effectively deploy oncolytic virotherapy, either as monotherapy or as combination therapy in the different clinical stages of bladder cancer.


Assuntos
Carcinoma de Células de Transição/terapia , Inibidores de Checkpoint Imunológico/uso terapêutico , Terapia Viral Oncolítica , Microambiente Tumoral/imunologia , Neoplasias da Bexiga Urinária/terapia , Imunidade Adaptativa/imunologia , Alarminas/imunologia , Antígenos de Neoplasias/imunologia , Carcinoma de Células de Transição/imunologia , Terapia Combinada , Citocinas/imunologia , Humanos , Imunidade Inata/imunologia , Inflamação/imunologia , Vírus Oncolíticos , Neoplasias da Bexiga Urinária/imunologia
15.
Front Immunol ; 12: 675538, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054863

RESUMO

Tertiary lymphoid structures (TLS) are ectopically formed aggregates of organized lymphocytes and antigen-presenting cells that occur in solid tissues as part of a chronic inflammation response. Sharing structural and functional characteristics with conventional secondary lymphoid organs (SLO) including discrete T cell zones, B cell zones, marginal zones with antigen presenting cells, reticular stromal networks, and high endothelial venues (HEV), TLS are prominent centers of antigen presentation and adaptive immune activation within the periphery. TLS share many signaling axes and leukocyte recruitment schemes with SLO regarding their formation and function. In cancer, their presence confers positive prognostic value across a wide spectrum of indications, spurring interest in their artificial induction as either a new form of immunotherapy, or as a means to augment other cell or immunotherapies. Here, we review approaches for inducible (iTLS) that utilize chemokines, inflammatory factors, or cellular analogues vital to TLS formation and that often mirror conventional SLO organogenesis. This review also addresses biomaterials that have been or might be suitable for iTLS, and discusses remaining challenges facing iTLS manufacturing approaches for clinical translation.


Assuntos
Imunoterapia , Estruturas Linfoides Terciárias/imunologia , Colágeno/metabolismo , Reação a Corpo Estranho/prevenção & controle , Humanos , Hidrogéis , Receptor beta de Linfotoxina/fisiologia , Nanopartículas , Neoplasias/imunologia , Neoplasias/terapia , Estruturas Linfoides Terciárias/fisiopatologia
16.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33827917

RESUMO

Lack or loss of tumor antigenicity represents one of the key mechanisms of immune escape and resistance to T cell-based immunotherapies. Evidence suggests that activation of stimulator of interferon genes (STING) signaling in tumor cells can augment their antigenicity by triggering a type I IFN-mediated sequence of autocrine and paracrine events. Although suppression of this pathway in melanoma and other tumor types has been consistently reported, the mechanistic basis remains unclear. In this study, we asked whether this suppression is, in part, epigenetically regulated and whether it is indeed a driver of melanoma resistance to T cell-based immunotherapies. Using genome-wide DNA methylation profiling, we show that promoter hypermethylation of cGAS and STING genes mediates their coordinated transcriptional silencing and contributes to the widespread impairment of the STING signaling function in clinically-relevant human melanomas and melanoma cell lines. This suppression is reversible through pharmacologic inhibition of DNA methylation, which can reinstate functional STING signaling in at least half of the examined cell lines. Using a series of T cell recognition assays with HLA-matched human melanoma tumor-infiltrating lymphocytes (TIL), we further show that demethylation-mediated restoration of STING signaling in STING-defective melanoma cell lines can improve their antigenicity through the up-regulation of MHC class I molecules and thereby enhance their recognition and killing by cytotoxic T cells. These findings not only elucidate the contribution of epigenetic processes and specifically DNA methylation in melanoma-intrinsic STING signaling impairment but also highlight their functional significance in mediating tumor-immune evasion and resistance to T cell-based immunotherapies.


Assuntos
Metilação de DNA , Epigênese Genética , Melanoma/genética , Proteínas de Membrana/genética , Linfócitos T/imunologia , Linhagem Celular Tumoral , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
17.
J Immunother ; 44(2): 63-70, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33443972

RESUMO

Adoptive cell transfer (ACT) with tumor-infiltrating lymphocytes (TILs) can generate durable clinical responses in patients with metastatic melanoma and ongoing trials are evaluating efficacy in other advanced solid tumors. The aim of this study was to develop methods for the expansion of tumor-reactive TIL from resected soft tissue sarcoma to a degree required for the ACT. From 2015 to 2018, 70 patients were consented to an institutional review board-approved protocol, and fresh surgical specimens were taken directly from the operating room to the laboratory. Fragments of the tumor (1 mm3) or fresh tumor digest were placed in culture for a period of 4 weeks. Successfully propagated TIL from these cultures were collected and analyzed by flow cytometry. TIL were cocultured with autologous tumor and function was assessed by measurement of interferon-γ in the supernatant by enzyme-linked immunosorbent assay. Initial TIL cultures were further expanded using a rapid expansion protocol. Nearly all specimens generated an initial TIL culture (91% fragment method, 100% digest method). The phenotype of the TIL indicated a predominant CD3+ population after culture (43% fragment, 52% digest) and TIL were responsive to the autologous tumor (56% fragment, 40% digest). The cultured TIL expanded to a degree required for clinical use following rapid expansion protocol (median: 490-fold fragment, 403-fold digest). The data demonstrate the feasibility of TIL culture from fresh soft tissue sarcoma. The derived TIL have tumor-specific reactivity and can be expanded to clinically relevant numbers. An active ACT clinical trial using the methods described in this report is now approved for patients with metastatic soft tissue sarcoma.


Assuntos
Linfócitos do Interstício Tumoral/imunologia , Sarcoma/imunologia , Sarcoma/patologia , Microambiente Tumoral , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Terapia Combinada/efeitos adversos , Terapia Combinada/métodos , Citotoxicidade Imunológica , Gerenciamento Clínico , Suscetibilidade a Doenças , Feminino , Humanos , Imunofenotipagem , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Sarcoma/terapia , Adulto Jovem
18.
Methods Mol Biol ; 2194: 255-290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32926371

RESUMO

The field of flow cytometry has witnessed rapid technological advancements in the last few decades. While the founding principles of fluorescent detection on cells (or particles) within a uniform fluid stream remains largely unchanged, the availability more sensitive cytometers with the ability to multiplex more and more florescent signals has resulted in very complex high-order assays. This results in the co-use of fluorophores with increased levels of emission overlap and/or spillover spreading than in years past and thus requires careful and well thought out planning for flow cytometry assay development. As an example, we present the development of a large 18-color (20 parameter) flow cytometry assay designed to take an in depth analysis of effector lymphocyte phenotypes, with careful attention to assay controls and panel design.


Assuntos
Citometria de Fluxo/métodos , Proteínas de Checkpoint Imunológico/metabolismo , Imunofenotipagem/métodos , Células Matadoras Naturais/imunologia , Células T Matadoras Naturais/imunologia , Anticorpos , Humanos , Células Matadoras Naturais/citologia , Células T Matadoras Naturais/citologia , Coloração e Rotulagem/métodos
19.
Eur Urol Focus ; 7(2): 373-380, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-31901438

RESUMO

BACKGROUND: Accumulating evidence suggests that alternative RNA splicing has an important role in cancer development and progression by driving the expression of a diverse array of RNA and protein isoforms from a handful of genes. However, our understanding of the clinical significance of cancer-specific RNA splicing in renal cell carcinoma (RCC) is limited. OBJECTIVE: To characterize and validate a novel oncogene RNA splicing event discovered in patients with RCC and to correlate expression with clinical outcomes. DESIGN, SETTING, AND PARTICIPANTS: Using DNA and RNA sequencing, we identified a novel epidermal growth factor receptor (EGFR) splicing alteration (EGFR_pr20CTF) in RCC tumor tissue. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We confirmed the frequency and specificity of the EGFR_pr20CTF variant by analyzing cohorts of patients from our institution (n = 699) and The Cancer Genome Atlas (TCGA; n = 832). Furthermore, we analyzed its expression in tumor tissue and a human kidney cancer cell line using reverse transcriptase-polymerase chain reaction. Variant expression was also correlated with survival and response to systemic therapy. RESULTS AND LIMITATIONS: EGFR_pr20CTF expression was identified in 71.7% (n = 71/99) of patients with RCC in our institutional cohort and in 56.7% (n = 279/492) of patients in the TCGA cohort. EGFR_pr20CTF was found to be specific to clear cell renal cell carcinoma (ccRCC), occurring in <0.2% of non-RCC tumors (n = 2/1091). High levels of EGFR_pr20CTF correlated with lower survival at 48 mo following immunotherapy (p = 0.036). The average survival in patients with high EGFR_pr20CTF expression was <16 mo. CONCLUSIONS: The EGFR_pr20CTF RNA splice variant occurs frequently, is specific to patients with advanced ccRCC, and is associated with a poor response to immunotherapy. PATIENT SUMMARY: Cancer-specific RNA alternative splicing may portend a poor prognosis in patients with advanced clear cell renal cell carcinoma. Further investigation will help clarify whether EGFR_pr20CTF can be used as a biomarker for this patient population.


Assuntos
Carcinoma de Células Renais/genética , Receptores ErbB/genética , Neoplasias Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/terapia , Expressão Gênica , Humanos , Imunoterapia , Neoplasias Renais/metabolismo , Neoplasias Renais/terapia , Prognóstico , RNA , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Cancers (Basel) ; 12(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33255891

RESUMO

Anti-PD-1 based immune therapies are thought to be dependent on antigen processing and presentation mechanisms. To characterize the immune-dependent mechanisms that predispose stage III/IV melanoma patients to respond to anti-PD-1 therapies, we performed a multi-omics study consisting of expression proteomics and targeted immune-oncology-based mRNA sequencing. Formalin-fixed paraffin-embedded tissue samples were obtained from stage III/IV patients with melanoma prior to anti-PD-1 therapy. The patients were first stratified into poor and good responders based on whether their tumors had or had not progressed while on anti-PD-1 therapy for 1 year. We identified 263 protein/gene candidates that displayed differential expression, of which 223 were identified via proteomics and 40 via targeted-mRNA analyses. The downstream analyses of expression profiles using MetaCore software demonstrated an enrichment of immune system pathways involved in antigen processing/presentation and cytokine production/signaling. Pathway analyses showed interferon (IFN)-γ-mediated signaling via NF-κB and JAK/STAT pathways to affect immune processes in a cell-specific manner and to interact with the inducible nitric oxide synthase. We review these findings within the context of available literature on the efficacy of anti-PD-1 therapy. The comparison of good and poor responders, using efficacy of PD-1-based therapy at 1 year, elucidated the role of antigen presentation in mediating response or resistance to anti-PD-1 blockade.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA