Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ISME J ; 17(12): 2326-2339, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37880541

RESUMO

In many anoxic environments, syntrophic acetate oxidation (SAO) is a key pathway mediating the conversion of acetate into methane through obligate cross-feeding interactions between SAO bacteria (SAOB) and methanogenic archaea. The SAO pathway is particularly important in engineered environments such as anaerobic digestion (AD) systems operating at thermophilic temperatures and/or with high ammonia. Despite the widespread importance of SAOB to the stability of the AD process, little is known about their in situ physiologies due to typically low biomass yields and resistance to isolation. Here, we performed a long-term (300-day) continuous enrichment of a thermophilic (55 °C) SAO community from a municipal AD system using acetate as the sole carbon source. Over 80% of the enriched bioreactor metagenome belonged to a three-member consortium, including an acetate-oxidizing bacterium affiliated with DTU068 encoding for carbon dioxide, hydrogen, and formate production, along with two methanogenic archaea affiliated with Methanothermobacter_A. Stable isotope probing was coupled with metaproteogenomics to quantify carbon flux into each community member during acetate conversion and inform metabolic reconstruction and genome-scale modeling. This effort revealed that the two Methanothermobacter_A species differed in their preferred electron donors, with one possessing the ability to grow on formate and the other only consuming hydrogen. A thermodynamic analysis suggested that the presence of the formate-consuming methanogen broadened the environmental conditions where ATP production from SAO was favorable. Collectively, these results highlight how flexibility in electron partitioning during SAO likely governs community structure and fitness through thermodynamic-driven mutualism, shedding valuable insights into the metabolic underpinnings of this key functional group within methanogenic ecosystems.


Assuntos
Ecossistema , Euryarchaeota , Anaerobiose , Elétrons , Acetatos/metabolismo , Bactérias , Archaea , Euryarchaeota/metabolismo , Oxirredução , Hidrogênio/metabolismo , Formiatos/metabolismo , Metano/metabolismo
2.
Biotechnol Biofuels ; 12: 104, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164923

RESUMO

BACKGROUND: Commercial biogas upgrading facilities are expensive and consume energy. Biological biogas upgrading may serve as a low-cost approach because it can be easily integrated with existing facilities at biogas plants. The microbial communities found in anaerobic digesters typically contain hydrogenotrophic methanogens, which can use hydrogen (H2) as a reducing agent for conversion of carbon dioxide (CO2) into methane (CH4). Thus, biological biogas upgrading through the exogenous addition of H2 into biogas digesters for the conversion of CO2 into CH4 can increase CH4 yield and lower CO2 emission. RESULTS: The addition of 4 mol of H2 per mol of CO2 was optimal for batch biogas reactors and increased the CH4 content of the biogas from 67 to 94%. The CO2 content of the biogas was reduced from 33 to 3% and the average residual H2 content was 3%. At molar H2:CO2 ratios > 4:1, all CO2 was converted into CH4, but the pH increased above 8 due to depletion of CO2, which negatively influenced the process stability. Additionally, high residual H2 content in these reactors was unfavourable, causing volatile fatty acid accumulation and reduced CH4 yields. The reactor microbial communities shifted in composition over time, which corresponded to changes in the reactor variables. Numerous taxa responded to the H2 inputs, and in particular the hydrogenotrophic methanogen Methanobacterium increased in abundance with addition of H2. In addition, the apparent rapid response of hydrogenotrophic methanogens to intermittent H2 feeding indicates the suitability of biological methanation for variable H2 inputs, aligning well with fluctuations in renewable electricity production that may be used to produce H2. CONCLUSIONS: Our research demonstrates that the H2:CO2 ratio has a significant effect on reactor performance during in situ biological methanation. Consequently, the H2:CO2 molar ratio should be kept at 4:1 to avoid process instability. A shift toward hydrogenotrophic methanogenesis was indicated by an increase in the abundance of the obligate hydrogenotrophic methanogen Methanobacterium.

3.
Biotechnol Biofuels ; 11: 61, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29541158

RESUMO

BACKGROUND: The emerging cellulosic bioethanol industry will generate huge amounts of lignin-rich residues that may be converted into biogas by anaerobic digestion (AD) to increase the output of energy carriers from the biorefinery plants. The carbohydrates fraction of lignocellulosic biomass is degradable, whereas the lignin fraction is generally considered difficult to degrade during AD. The objective of this study was to investigate the feasibility of biogas production by AD from hydrolysis lignin (HL), prepared by steam explosion (SE) and enzymatic saccharification of birch. A novel nylon bag technique together with two-dimensional nuclear magnetic resonance spectroscopy, pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS), and Fourier transform infrared (FTIR) spectroscopy was used to identify recalcitrant and degradable structures in the lignin during AD. RESULTS: The HL had a lignin content of 80% which included pseudo-lignin and condensed-lignin structures resulting from the SE pretreatment. The obtained methane yield from HL was almost twofold higher than the theoretical methane from the carbohydrate fraction alone, indicating that part of the lignin was converted to methane. Characterization of the undegradable material after AD revealed a substantial loss of signals characteristic for carbohydrates and lignin-carbohydrate complexes (LCC), indicating conversion of these chemical components to methane during AD. The ß-O-4' linkage and resinol were not modified as such in AD, but major change was seen for the S/G ratio from 5.8 to 2.6, phenylcoumaran from 4.9 to 1.0%, and pseudo-lignin and condensed-lignin were clearly degraded. Scanning electron microscopy and simultaneous thermal analysis measurements demonstrated changes in morphology and thermal properties following SE pretreatment and AD. Our results showed that carbohydrate, LCC, pseudo-lignin, and condensed-lignin degradation had contributed to methane production. The energy yield for the combined ethanol production and biogas production was 8.1 MJ fuel per kg DM of substrate (4.9 MJ/kg from ethanol and 3.2 MJ/kg from methane). CONCLUSION: This study shows the benefit of using a novel bag technique together with advanced analytical techniques to investigate the degradation mechanisms of lignin during AD, and also points to a possible application of HL produced in cellulosic bioethanol plants.

4.
Biotechnol Biofuels ; 11: 19, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29422947

RESUMO

BACKGROUND: Biogas production from lignocellulosic biomass is generally considered to be challenging due to the recalcitrant nature of this biomass. In this study, the recalcitrance of birch was reduced by applying steam-explosion (SE) pretreatment (210 °C and 10 min). Moreover, bioaugmentation with the cellulolytic bacterium Caldicellulosiruptor bescii was applied to possibly enhance the methane production from steam-exploded birch in an anaerobic digestion (AD) process under thermophilic conditions (62 °C). RESULTS: Overall, the combined SE and bioaugmentation enhanced the methane yield up to 140% compared to untreated birch, while SE alone contributed to the major share of methane enhancement by 118%. The best methane improvement of 140% on day 50 was observed in bottles fed with pretreated birch and bioaugmentation with lower dosages of C. bescii (2 and 5% of inoculum volume). The maximum methane production rate also increased from 4-mL CH4/g VS (volatile solids)/day for untreated birch to 9-14-mL CH4/g VS/day for steam-exploded birch with applied bioaugmentation. Bioaugmentation was particularly effective for increasing the initial methane production rate of the pretreated birch yielding 21-44% more methane than the pretreated birch without applied bioaugmentation. The extent of solubilization of the organic matter was increased by more than twofold when combined SE pretreatment and bioaugmentation was used in comparison with the methane production from untreated birch. The beneficial effects of SE and bioaugmentation on methane yield indicated that biomass recalcitrance and hydrolysis step are the limiting factors for efficient AD of lignocellulosic biomass. Microbial community analysis by 16S rRNA amplicon sequencing showed that the microbial community composition was altered by the pretreatment and bioaugmentation processes. Notably, the enhanced methane production by pretreatment and bioaugmentation was well correlated with the increase in abundance of key bacterial and archaeal communities, particularly the hydrolytic bacterium Caldicoprobacter, several members of syntrophic acetate oxidizing bacteria and the hydrogenotrophic Methanothermobacter. CONCLUSION: Our findings demonstrate the potential of combined SE and bioaugmentation for enhancing methane production from lignocellulosic biomass.

5.
Bioresour Technol ; 249: 35-41, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29040857

RESUMO

Biogas production potential of the three feedstocks fish ensilage, manure and whey was evaluated using biochemical methane potential (BMP) tests. Since anaerobic digestion of single substrates may be inefficient due to imbalances in the carbon-nitrogen ratio, degree of biodegradability and/or due to lack of nutrients needed by the microbial community, co-digestion of these substrates was also assessed, revealing synergistic effects and a particularly good effect of combining manure with fish ensilage. In this latter case, methane yields were up to 84% higher than the weighted average of the methane yields obtained with the individual substrates. The type of substrate was the dominating cause of variation in methane production rates and yields.


Assuntos
Anaerobiose , Biocombustíveis , Esterco , Soro do Leite , Animais , Peixes , Metano
6.
Waste Manag ; 68: 146-156, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28623019

RESUMO

Biological reduction of CO2 into CH4 by exogenous addition of H2 is a promising technology for upgrading biogas into higher CH4 content. The aim of this work was to study the feasibility of exogenous H2 addition for an in situ biogas upgrading through biological conversion of the biogas CO2 into CH4. Moreover, this study employed systematic study with isotope analysis for providing comprehensive evidence on the underlying pathways of CH4 production and upstream processes. Batch reactors were inoculated with digestate originating from a full-scale biogas plant and fed once with maize leaf substrate. Periodic addition of H2 into the headspace resulted in a completely consumption of CO2 and a concomitant increase in CH4 content up to 89%. The microbial community and isotope analysis shows an enrichment of hydrogenotrophic Methanobacterium and the key role of hydrogenotrophic methanogenesis for biogas upgrading to higher CH4 content. Excess H2 was also supplied to evaluate its effect on overall process performance. The results show that excess H2 addition resulted in accumulation of H2, depletion of CO2 and inhibition of the degradation of acetate and other volatile fatty acids (VFA). A systematic isotope analysis revealed that excess H2 supply led to an increase in dissolved H2 to the level that thermodynamically inhibit the degradation of VFA and stimulate homo-acetogens for production of acetate from CO2 and H2. The inhibition was a temporary effect and acetate degradation resumed when the excess H2 was removed as well as in the presence of stoichiometric amount of H2 and CO2. This inhibition mechanism underlines the importance of carefully regulating the H2 addition rate and gas retention time to the CO2 production rate, H2-uptake rate and growth of hydrogenotrophic methanogens in order to achieve higher CH4 content without the accumulation of acetate and other VFA.


Assuntos
Biocombustíveis , Dióxido de Carbono , Metano , Reatores Biológicos , Euryarchaeota
7.
Appl Environ Microbiol ; 82(2): 438-49, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26497462

RESUMO

Flexible biogas production that adapts biogas output to energy demand can be regulated by changing feeding regimes. In this study, the effect of changes in feeding intervals on process performance, microbial community structure, and the methanogenesis pathway was investigated. Three different feeding regimes (once daily, every second day, and every 2 h) at the same organic loading rate were studied in continuously stirred tank reactors treating distiller's dried grains with solubles. A larger amount of biogas was produced after feeding in the reactors fed less frequently (once per day and every second day), whereas the amount remained constant in the reactor fed more frequently (every 2 h), indicating the suitability of the former for the flexible production of biogas. Compared to the conventional more frequent feeding regimes, a methane yield that was up to 14% higher and an improved stability of the process against organic overloading were achieved by employing less frequent feeding regimes. The community structures of bacteria and methanogenic archaea were monitored by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA and mcrA genes, respectively. The results showed that the composition of the bacterial community varied under the different feeding regimes, and the observed T-RFLP patterns were best explained by the differences in the total ammonia nitrogen concentrations, H2 levels, and pH values. However, the methanogenic community remained stable under all feeding regimes, with the dominance of the Methanosarcina genus followed by that of the Methanobacterium genus. Stable isotope analysis showed that the average amount of methane produced during each feeding event by acetoclastic and hydrogenotrophic methanogenesis was not influenced by the three different feeding regimes.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Biocombustíveis/microbiologia , Reatores Biológicos/microbiologia , Microbiologia Industrial/métodos , Metano/metabolismo , Archaea/genética , Archaea/crescimento & desenvolvimento , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Biocombustíveis/análise , Microbiologia Industrial/instrumentação
8.
Talanta ; 143: 56-63, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26078128

RESUMO

In anaerobic digestion of organic matter, several metabolic pathways are involved during the simultaneous production and consumption of short-chain fatty acids (SCFA) in general and acetate in particular. Understanding the role of each pathway requires both the determination of the concentration and isotope enrichment of intermediates in conjunction with isotope labeled substrates. The objective of this study was to establish a rapid and simple GC/MS method for determining the isotope enrichment of acetate and concentration of underivatized short-chain fatty acids (SCFA) in biogas digester samples by direct liquid injection of acidified aqueous samples. Sample preparation involves only acidification, centrifugation and filtration of the aqueous solution followed by direct injection of the aqueous supernatant solution onto a polar column. With the sample preparation and GC/MS conditions employed, well-resolved and sharp peaks of underivatized SCFA were obtained in a reasonably short time. Good recovery (96.6-102.3%) as well as low detection (4-7 µmol/L) and quantification limits (14-22 µmol/L) were obtained for all the 6 SCFA studied. Good linearity was achieved for both concentration and isotope enrichment measurement with regression coefficients higher than 0.9978 and 0.9996, respectively. The method has a good intra- and inter-day precision with a relative standard deviation (RSD) below 6% for determining the tracer-to-tracee ratio (TTR) of both [2-(13)C]acetate and [U-(13)C]acetate. It has also a good intra- and inter-day precision with a RSD below 6% and 5% for determining the concentration of standard solution and biogas digester samples, respectively. Acidification of biogas digester samples with oxalic acid provided the low pH required for the protonation of SCFA and thus, allows the extraction of SCFA from the complex sample matrix. Moreover, oxalic acid was the source of formic acid which was produced in the injector set at high temperature. The produced formic acid prevented the adsorption of SCFA in the column, thereby eliminating peak tailing and ghost peaks. The applicability of the validated GC/MS method for determining the concentration of acetate and its (13)C isotope enrichment in anaerobic digester samples was tested and the results demonstrated the suitability of this method for identifying the metabolic pathways involved in degradation and production of acetate.


Assuntos
Biocombustíveis/microbiologia , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Água/química , Acetatos/metabolismo , Bactérias/metabolismo , Isótopos de Carbono/química , Ácidos Graxos Voláteis/isolamento & purificação , Injeções , Limite de Detecção , Modelos Lineares , Soluções
9.
Phytochem Anal ; 25(6): 529-36, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24777944

RESUMO

INTRODUCTION: Stilbenes are plant secondary metabolites that have shown promising and varied biological activities. Stilbenes are presently actively studied for the exploitation of this primary raw material resource, involving the concept of biorefining. Methods for the rapid discovery of new and known stilbene structures from various plant sources are thus keenly sought. OBJECTIVE: To establish a simple and rapid technique of off-line HPLC with a diode-array detector (DAD) and NMR for the unambiguous structural elucidation of stilbene structures in the root bark of Norway spruce [Picea abies (L.) Karst.]. MATERIAL AND METHODS: The stilbene containing fraction was extracted from the plant bark with an ethanol:water mixture (95:5, v/v) preceded by defatting of hydrophobic compounds with n-hexane using the accelerated solvent extraction technique. A portion of the ethanol-water soluble extract was hydrolysed with ß-glucosidase to prepare stilbene aglycones. The extracts were further purified and enriched using a polymeric adsorbent. Stilbene-enriched extracts were directly characterised by off-line HPLC/DAD-NMR in conjunction with HPLC/DAD and HPLC/DAD with electrospray ionisation MS(n). RESULTS: Trans-isorhapontin and trans-astringin were identified as the major, and trans-piceid as a minor, stilbene glucosides of the bark of roots of Picea abies. Not only stilbene glucosides but also the corresponding stilbene aglycones, such as trans-resveratrol, trans-piceatannol and trans-isorhapontigenin, were rapidly identified from the hydrolysed extract. The acquired heteronuclear single-quantum coherence and heteronuclear multiple bond correlation spectra were used to assign the complete carbon NMR chemical shifts of trans-isorhapontin and trans-astringin without the need of acquiring a (13)C-NMR spectrum. CONCLUSION: The off-line HPLC/DAD-NMR method is expedient for the unambiguous identication of structurally similar stilbenes in plant extracts.


Assuntos
Glucosídeos/química , Picea/química , Casca de Planta/química , Extratos Vegetais/química , Estilbenos/química , Cromatografia Líquida de Alta Pressão/métodos , Glucosídeos/isolamento & purificação , Espectroscopia de Ressonância Magnética/métodos , Extratos Vegetais/isolamento & purificação , Raízes de Plantas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Estilbenos/isolamento & purificação
10.
Environ Sci Technol ; 48(4): 2505-11, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24437339

RESUMO

A unique method was developed and applied for monitoring methanogenesis pathways based on isotope labeled substrates combined with online membrane inlet quadrupole mass spectrometry (MIMS). In our study, a fermentation sample from a full-scale biogas plant fed with pig and cattle manure, maize silage, and deep litter was incubated with 100 mM of [2-(13)C] sodium acetate under thermophilic anaerobic conditions. MIMS was used to measure the isotopic distribution of dissolved CO2 and CH4 during the degradation of acetate, while excluding interference from water by applying a cold trap. After 6 days of incubation, the proportion of methane derived from reduction of CO2 had increased significantly and reached up to 87% of total methane, suggesting that synthrophic acetate oxidation coupled to hydrogenotrophic methanogenesis (SAO-HM) played an important role in the degradation of acetate. This study provided a new approach for online quantification of the relative contribution of methanogenesis pathways to methane production with a time resolution shorter than one minute. The observed contribution of SAO-HM to methane production under the tested conditions challenges the current widely accepted anaerobic digestion model (ADM1), which strongly emphasizes the importance of the acetoclastic methanogenesis.


Assuntos
Acetatos/metabolismo , Reatores Biológicos/microbiologia , Espectrometria de Massas/métodos , Membranas Artificiais , Metano/biossíntese , Anaerobiose , Animais , Biocombustíveis , Calibragem , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Bovinos , Hidrogênio/metabolismo , Limite de Detecção , Microbiota , Oxirredução , Padrões de Referência , Suínos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA