Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(6): 107292, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636659

RESUMO

[FeFe]-hydrogenases catalyze the reversible oxidation of H2 from electrons and protons at an organometallic active site cofactor named the H-cluster. In addition to the H-cluster, most [FeFe]-hydrogenases possess accessory FeS cluster (F-cluster) relays that function in mediating electron transfer with catalysis. There is significant variation in the structural properties of F-cluster relays among the [FeFe]-hydrogenases; however, it is unknown how this variation relates to the electronic and thermodynamic properties, and thus the electron transfer properties, of enzymes. Clostridium pasteurianum [FeFe]-hydrogenase II (CpII) exhibits a large catalytic bias for H2 oxidation (compared to H2 production), making it a notable system for examining if F-cluster properties contribute to the overall function and efficiency of the enzyme. By applying a combination of multifrequency and potentiometric electron paramagnetic resonance, we resolved two electron paramagnetic resonance signals with distinct power- and temperature-dependent properties at g = 2.058 1.931 1.891 (F2.058) and g = 2.061 1.920 1.887 (F2.061), with assigned midpoint potentials of -140 ± 18 mV and -406 ± 12 mV versus normal hydrogen electrode, respectively. Spectral analysis revealed features consistent with spin-spin coupling between the two [4Fe-4S] F-clusters, and possible functional models are discussed that account for the contribution of coupling to the electron transfer landscape. The results signify the interplay of electronic coupling and free energy properties and parameters of the FeS clusters to the electron transfer mechanism through the relay and provide new insight as to how relays functionally complement the catalytic directionality of active sites to achieve highly efficient catalysis.

2.
ACS Appl Mater Interfaces ; 16(17): 22736-22746, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38650370

RESUMO

In monocrystalline Si (c-Si) solar cells, identification and mitigation of bulk defects are crucial to achieving a high photoconversion efficiency. To spectroscopically detect defects in the c-Si bulk, it is desirable to passivate the surface defects. Passivation of the c-Si surface with dielectrics such as Al2O3 and SiNx requires deposition at elevated temperatures, which can influence defects in the bulk. Herein, we report on the passivation of different Czochralski (Cz) Si wafer surfaces by an organic copolymer, Nafion. We test the efficacy of the surface passivation at temperatures ranging from 6 to 473 K to detect bulk defects using electron paramagnetic resonance (EPR) spectroscopy. By comparing with state-of-the-art passivation layers, including Al2O3 and liquid HF/HCl, we found that at room temperature, Nafion can provide comparable passivation of n-type Cz Si with an implied open-circuit voltage (iVoc) of 713 mV and a recombination current prefactor J0 of 5 fA/cm2. For p-type Cz Si, we obtained an iVoc of 682 mV with a J0 of 22.4 fA/cm2. Scanning electron microscopy and photoluminescence reveal that Nafion can also be used to passivate the surface of c-Si solar cell fragments scribed from a solar cell module by using a laser. Consistent with previous studies, analysis of the EPR spectroscopy data confirms that the H-terminated surface is necessary, and fixed negative charge in Nafion is responsible for the field-effect passivation. While the surface passivation quality was maintained for almost 24 h, which is sufficient for spectroscopic measurements, the passivation degraded over longer durations, which can be attributed to surface SiOx growth. These results show that Nafion is a promising room-temperature surface passivation technique to study bulk defects in c-Si.

3.
J Inorg Biochem ; 251: 112428, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38008043

RESUMO

Electron carrier proteins (ECPs), binding iron-sulfur clusters, are vital components within the intricate network of metabolic and photosynthetic reactions. They play a crucial role in the distribution of reducing equivalents. In Synechocystis sp. PCC 6803, the ECP network includes at least nine ferredoxins. Previous research, including global expression analyses and protein binding studies, has offered initial insights into the functional roles of individual ferredoxins within this network. This study primarily focuses on Ferredoxin 9 (slr2059). Through sequence analysis and computational modeling, Ferredoxin 9 emerges as a unique ECP with a distinctive two-domain architecture. It consists of a C-terminal iron­sulfur binding domain and an N-terminal domain with homology to Nil-domain proteins, connected by a structurally rigid 4-amino acid linker. Notably, in contrast to canonical [2Fe2S] ferredoxins exemplified by PetF (ssl0020), which feature highly acidic surfaces facilitating electron transfer with photosystem I reaction centers, models of Ferredoxin 9 reveal a more neutral to basic protein surface. Using a combination of electron paramagnetic resonance spectroscopy and square-wave voltammetry on heterologously produced Ferredoxin 9, this study demonstrates that the protein coordinates 2×[4Fe4S]2+/1+ redox-active and magnetically interacting clusters, with measured redox potentials of -420 ± 9 mV and - 516 ± 10 mV vs SHE. A more in-depth analysis of Fdx9's unique structure and protein sequence suggests that this type of Nil-2[4Fe4S] multi-domain ferredoxin is well conserved in cyanobacteria, bearing structural similarities to proteins involved in homocysteine synthesis in methanogens.


Assuntos
Ferredoxinas , Synechocystis , Ferredoxinas/metabolismo , Transporte de Elétrons , Ferro/química , Enxofre/metabolismo
4.
J Chem Phys ; 159(23)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38117020

RESUMO

The biological reduction of N2 to ammonia requires the ATP-dependent, sequential delivery of electrons from the Fe protein to the MoFe protein of nitrogenase. It has been demonstrated that CdS nanocrystals can replace the Fe protein to deliver photoexcited electrons to the MoFe protein. Herein, light-activated electron delivery within the CdS:MoFe protein complex was achieved in the frozen state, revealing that all the electron paramagnetic resonance (EPR) active E-state intermediates in the catalytic cycle can be trapped and characterized by EPR spectroscopy. Prior to illumination, the CdS:MoFe protein complex EPR spectrum was composed of a S = 3/2 rhombic signal (g = 4.33, 3.63, and 2.01) consistent with the FeMo-cofactor in the resting state, E0. Illumination for sequential 1-h periods at 233 K under 1 atm of N2 led to a cumulative attenuation of E0 by 75%. This coincided with the appearance of S = 3/2 and S = 1/2 signals assigned to two-electron (E2) and four-electron (E4) reduced states of the FeMo-cofactor, together with additional S = 1/2 signals consistent with the formation of E6 and E8 states. Simulations of EPR spectra allowed quantification of the different E-state populations, along with mapping of these populations onto the Lowe-Thorneley kinetic scheme. The outcome of this work demonstrates that the photochemical delivery of electrons to the MoFe protein can be used to populate all of the EPR active E-state intermediates of the nitrogenase MoFe protein cycle.


Assuntos
Azotobacter vinelandii , Pontos Quânticos , Molibdoferredoxina/química , Molibdoferredoxina/metabolismo , Temperatura , Oxirredução , Nitrogenase/química , Nitrogenase/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Azotobacter vinelandii/metabolismo
5.
Nano Lett ; 23(22): 10466-10472, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37930772

RESUMO

Nitrogenase MoFe protein can be coupled with CdS nanocrystals (NCs) to enable photocatalytic N2 reduction. The nature of interactions that support complex formation is of paramount importance in intermolecular electron transfer that supports catalysis. In this work we have employed microscale thermophoresis to examine binding interactions between 3-mercaptopropionate capped CdS quantum dots (QDs) and MoFe protein over a range of QD diameters (3.4-4.3 nm). The results indicate that the interactions are largely electrostatic, with the strength of interactions similar to that observed for the physiological electron donor. In addition, the strength of interactions is sensitive to the QD diameter, and the binding interactions are significantly stronger for QDs with smaller diameters. The ability to quantitatively assess NC protein interactions in biohybrid systems supports strategies for understanding properties and reaction parameters that are important for obtaining optimal rates of catalysis in biohybrid systems.


Assuntos
Molibdoferredoxina , Pontos Quânticos , Molibdoferredoxina/química , Molibdoferredoxina/metabolismo , Eletricidade Estática , Nitrogenase/química , Nitrogenase/metabolismo , Transporte de Elétrons
6.
J Am Chem Soc ; 145(39): 21165-21169, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37729189

RESUMO

A critical step in the mechanism of N2 reduction to 2NH3 catalyzed by the enzyme nitrogenase is the reaction of the four-electron/four-proton reduced intermediate state of the active-site FeMo-cofactor (E4(4H)). This state is a junction in the catalytic mechanism, either relaxing by the reaction of a metal bound Fe-hydride with a proton forming H2 or going forward with N2 binding coupled to the reductive elimination (re) of two Fe-hydrides as H2 to form the E4(2N2H) state. E4(2N2H) can relax to E4(4H) by the oxidative addition (oa) of H2 and release of N2 or can be further reduced in a series of catalytic steps to release 2NH3. If the H2 re/oa mechanism is correct, it requires that oa of H2 be associative with E4(2N2H). In this report, we have taken advantage of CdS quantum dots in complex with MoFe protein to achieve photodriven electron delivery in the frozen state, with cryo-annealing in the dark, to reveal details of the E-state species and to test the stability of E4(2N2H). Illumination of frozen CdS:MoFe protein complexes led to formation of a population of reduced intermediates. Electron paramagnetic resonance spectroscopy identified E-state signals including E2 and E4(2N2H), as well as signals suggesting the formation of E6 or E8. It is shown that in the frozen state when pN2 is much greater than pH2, the E4(2N2H) state is kinetically stable, with very limited forward or reverse reaction rates. These results establish that the oa of H2 to the E4(2N2H) state follows an associative reaction mechanism.

7.
Front Microbiol ; 13: 903951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246213

RESUMO

The [FeFe]-hydrogenases are enzymes that catalyze the reversible activation of H2 coupled to the reduction-oxidation of electron carriers. Members of the different taxonomic groups of [FeFe]-hydrogenases display a wide range of preference, or bias, for H2 oxidation or H2 production reactions, despite sharing a common catalytic cofactor, or H-cluster. Identifying the properties that control reactivity remains an active area of investigation, and models have emerged that include diversity in the catalytic site coordination environments and compositions of electron transfer chains. The kinetics of proton-coupled electron transfer at the H-cluster might be expected to be a point of control of reactivity. To test this hypothesis, systematic changes were made to the conserved cysteine residue that functions in proton exchange with the H-cluster in the three model enzymes: CaI, CpII, and CrHydA1. CaI and CpII both employ electron transfer accessory clusters but differ in bias, whereas CrHydA1 lacks accessory clusters having only the H-cluster. Changing from cysteine to either serine (more basic) or aspartate (more acidic) modifies the sidechain pKa and thus the barrier for the proton exchange step. The reaction rates for H2 oxidation or H2 evolution were surveyed and measured for model [FeFe]-hydrogenases, and the results show that the initial proton-transfer step in [FeFe]-hydrogenase is tightly coupled to the control of reactivity; a change from cysteine to more basic serine favored H2 oxidation in all enzymes, whereas a change to more acidic aspartate caused a shift in preference toward H2 evolution. Overall, the changes in reactivity profiles were profound, spanning 105 in ratio of the H2 oxidation-to-H2 evolution rates. The fact that the change in reactivity follows a common trend implies that the effect of changing the proton-transfer residue pKa may also be framed as an effect on the scaling relationship between the H-cluster di(thiolmethyl)amine (DTMA) ligand pKa and E m values of the H-cluster. Experimental observations that support this relationship, and how it relates to catalytic function in [FeFe]-hydrogenases, are discussed.

8.
Chem Sci ; 13(16): 4581-4588, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35656134

RESUMO

One of the many functions of reduction-oxidation (redox) cofactors is to mediate electron transfer in biological enzymes catalyzing redox-based chemical transformation reactions. There are numerous examples of enzymes that utilize redox cofactors to form electron transfer relays to connect catalytic sites to external electron donors and acceptors. The compositions of relays are diverse and tune transfer thermodynamics and kinetics towards the chemical reactivity of the enzyme. Diversity in relay design is exemplified among different members of hydrogenases, enzymes which catalyze reversible H2 activation, which also couple to diverse types of donor and acceptor molecules. The [FeFe]-hydrogenase I from Clostridium acetobutylicum (CaI) is a member of a large family of structurally related enzymes where interfacial electron transfer is mediated by a terminal, non-canonical, His-coordinated, [4Fe-4S] cluster. The function of His coordination was examined by comparing the biophysical properties and reactivity to a Cys substituted variant of CaI. This demonstrated that His coordination strongly affected the distal [4Fe-4S] cluster spin state, spin pairing, and spatial orientations of molecular orbitals, with a minor effect on reduction potential. The deviations in these properties by substituting His for Cys in CaI, correlated with pronounced changes in electron transfer and reactivity with the native electron donor-acceptor ferredoxin. The results demonstrate that differential coordination of the surface localized [4Fe-4S]His cluster in CaI is utilized to control intermolecular and intramolecular electron transfer where His coordination creates a physical and electronic environment that enables facile electron exchange between electron carrier molecules and the iron-sulfur cluster relay for coupling to reversible H2 activation at the catalytic site.

9.
RSC Adv ; 12(23): 14655-14664, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35702219

RESUMO

The capacity of cyanobacteria to adapt to highly dynamic photon flux and nutrient availability conditions results from controlled management and use of reducing power, and is a major contributing factor to the efficiency of photosynthesis in aquatic environments. The response to changing conditions includes modulating gene expression and protein-protein interactions that serve to adjust the use of electron flux and mechanisms that control photosynthetic electron transport (PET). In this regard, the photochemical activity of photosystem I (PSI) reaction centers can support balancing of cyclic (CEF) and linear electron flow (LEF), and the coupling of redox carriers for use by electron utilization pathways. Therefore, changes in the utilization of reducing power might be expected to result in compensating changes at PSI as a means to support balance of electron flux. To understand this functional relationship, we investigated the properties of PSI and its photochemical activity in cells that lack flavodiiron 1 catalyzed oxygen reduction activity (ORR1). In the absence of ORR1, the oxygen evolution and consumption rates declined together with a shift in the oligomeric form of PSI towards monomers. The effect of these changes on PSI energy and electron transfer properties was examined in isolated trimer and monomer fractions of PSI reaction centers. Collectively, the results demonstrate that PSI photochemistry is modulated through coordination with the depletion of electron demand in the absence of ORR1.

10.
Proc Natl Acad Sci U S A ; 119(12): e2117882119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35290111

RESUMO

Electron bifurcation, an energy-conserving process utilized extensively throughout all domains of life, represents an elegant means of generating high-energy products from substrates with less reducing potential. The coordinated coupling of exergonic and endergonic reactions has been shown to operate over an electrochemical potential of ∼1.3 V through the activity of a unique flavin cofactor in the enzyme NADH-dependent ferredoxin-NADP+ oxidoreductase I. The inferred energy landscape has features unprecedented in biochemistry and presents novel energetic challenges, the most intriguing being a large thermodynamically uphill step for the first electron transfer of the bifurcation reaction. However, ambiguities in the energy landscape at the bifurcating site deriving from overlapping flavin spectral signatures have impeded a comprehensive understanding of the specific mechanistic contributions afforded by thermodynamic and kinetic factors. Here, we elucidate an uncharacteristically low two-electron potential of the bifurcating flavin, resolving the energetic challenge of the first bifurcation event.


Assuntos
Elétrons , Flavinas , Dinitrocresóis , Transporte de Elétrons , Ferredoxina-NADP Redutase/metabolismo , Flavinas/metabolismo , Oxirredução
11.
J Am Chem Soc ; 144(13): 5708-5712, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35315658

RESUMO

The [8Fe-7S] P-cluster of nitrogenase MoFe protein mediates electron transfer from nitrogenase Fe protein during the catalytic production of ammonia. The P-cluster transitions between three oxidation states, PN, P+, P2+ of which PN↔P+ is critical to electron exchange in the nitrogenase complex during turnover. To dissect the steps in formation of P+ during electron transfer, photochemical reduction of MoFe protein at 231-263 K was used to trap formation of P+ intermediates for analysis by EPR. In complexes with CdS nanocrystals, illumination of MoFe protein led to reduction of the P-cluster P2+ that was coincident with formation of three distinct EPR signals: S = 1/2 axial and rhombic signals, and a high-spin S = 7/2 signal. Under dark annealing the axial and high-spin signal intensities declined, which coincided with an increase in the rhombic signal intensity. A fit of the time-dependent changes of the axial and high-spin signals to a reaction model demonstrates they are intermediates in the formation of the P-cluster P+ resting state and defines how spin-state transitions are coupled to changes in P-cluster oxidation state in MoFe protein during electron transfer.


Assuntos
Azotobacter vinelandii , Molibdoferredoxina , Azotobacter vinelandii/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Eletrônica , Molibdoferredoxina/química , Nitrogenase/química , Oxirredução
12.
Front Catal ; 22022.
Artigo em Inglês | MEDLINE | ID: mdl-36844461

RESUMO

Hydrogen is a clean, renewable energy source, that when combined with oxygen, produces heat and electricity with only water vapor as a biproduct. Furthermore, it has the highest energy content by weight of all known fuels. As a result, various strategies have engineered methods to produce hydrogen efficiently and in quantities that are of interest to the economy. To approach the notion of producing hydrogen from a biological perspective, we take our attention to hydrogenases which are naturally produced in microbes. These organisms have the machinery to produce hydrogen, which when cleverly engineered, could be useful in cell factories resulting in large production of hydrogen. Not all hydrogenases are efficient at hydrogen production, and those that are, tend to be oxygen sensitive. Therefore, we provide a new perspective on introducing selenocysteine, a highly reactive proteinogenic amino acid, as a strategy towards engineering hydrogenases with enhanced hydrogen production, or increased oxygen tolerance.

14.
ACS Appl Mater Interfaces ; 13(10): 11930-11939, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33660970

RESUMO

Lithium transition-metal oxides (LiMn2O4 and LiMO2 where M = Ni, Mn, Co, etc.) are widely applied as cathode materials in lithium-ion batteries due to their considerable capacity and energy density. However, multiple processes occurring at the cathode/electrolyte interface lead to overall performance degradation. One key failure mechanism is the dissolution of transition metals from the cathode. This work presents results combining scanning electrochemical microscopy with inductively coupled plasma (ICP) and electron paramagnetic resonance (EPR) spectroscopies to examine cathode degradation products. Our effort employs a LiMn2O4 (LMO) thin film as a model cathode to monitor the Mn dissolution process without the potential complications of conductive additive and polymer binders. We characterize the electrochemical behavior of LMO degradation products in various electrolytes, paired with ICP and EPR, to better understand the properties of Mn complexes formed following metal dissolution. We find that the identity of the lithium salt anions in our electrolyte systems [ClO4-, PF6-, and (CF3SO2)2N-] appears to affect the Mn dissolution process significantly as well as the electrochemical behavior of the generated Mn complexes. This implies that the mechanism for Mn dissolution is at least partially dependent on the lithium salt anion.

15.
Chem Commun (Camb) ; 57(6): 713-720, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33367317

RESUMO

Cataytic bias refers to the propensity of a reaction catalyst to effect a different rate acceleration in one direction versus the other in a chemical reaction under non-equilibrium conditions. In biocatalysis, the inherent bias of an enzyme is often advantagous to augment the innate thermodynamics of a reaction to promote efficiency and fidelity in the coordination of catabolic and anabolic pathways. In industrial chemical catalysis a directional cataltyic bias is a sought after property in facilitating the engineering of systems that couple catalysis with harvest and storage of for example fine chemicals or energy compounds. Interestingly, there is little information about catalytic bias in biocatalysis likely in large part due to difficulties in developing tractible assays sensitive enough to study detailed kinetics. For oxidation-reduction reactions, colorimetric redox indicators exist in a range of reduction potentials to provide a mechanism to study both directions of reactions in a fairly facile manner. The current short review attempts to define catalytic bias conceptually and to develop model systems for defining the parameters that control catalytic bias in enzyme catalyzed oxidation-reduction catalysis.

17.
J Am Chem Soc ; 142(33): 14324-14330, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32787260

RESUMO

Coupling the nitrogenase MoFe protein to light-harvesting semiconductor nanomaterials replaces the natural electron transfer complex of Fe protein and ATP and provides low-potential photoexcited electrons for photocatalytic N2 reduction. A central question is how direct photochemical electron delivery from nanocrystals to MoFe protein is able to support the multielectron ammonia production reaction. In this study, low photon flux conditions were used to identify the initial reaction intermediates of CdS quantum dot (QD):MoFe protein nitrogenase complexes under photochemical activation using EPR. Illumination of CdS QD:MoFe protein complexes led to redox changes in the MoFe protein active site FeMo-co observed as the gradual decline in the E0 resting state intensity that was accompanied by an increase in the intensity of a new "geff = 4.5" EPR signal. The magnetic properties of the geff = 4.5 signal support assignment as a reduced S = 3/2 state, and reaction modeling was used to define it as a two-electron-reduced "E2" intermediate. Use of a MoFe protein variant, ß-188Cys, which poises the P cluster in the oxidized P+ state, demonstrated that the P cluster can function as a site of photoexcited electron delivery from CdS to MoFe protein. Overall, the results establish the initial steps for how photoexcited CdS delivers electrons into the MoFe protein during reduction of N2 to ammonia and the role of electron flux in the photochemical reaction cycle.


Assuntos
Compostos de Cádmio/metabolismo , Molibdoferredoxina/metabolismo , Pontos Quânticos/metabolismo , Sulfetos/metabolismo , Azotobacter vinelandii/enzimologia , Compostos de Cádmio/química , Transporte de Elétrons , Molibdoferredoxina/química , Oxirredução , Processos Fotoquímicos , Pontos Quânticos/química , Sulfetos/química
18.
J Biol Chem ; 295(28): 9445-9454, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32409585

RESUMO

Cyanobacterial Hox is a [NiFe] hydrogenase that consists of the hydrogen (H2)-activating subunits HoxYH, which form a complex with the HoxEFU assembly to mediate reactions with soluble electron carriers like NAD(P)H and ferredoxin (Fdx), thereby coupling photosynthetic electron transfer to energy-transforming catalytic reactions. Researchers studying the HoxEFUYH complex have observed that HoxEFU can be isolated independently of HoxYH, leading to the hypothesis that HoxEFU is a distinct functional subcomplex rather than an artifact of Hox complex isolation. Moreover, outstanding questions about the reactivity of Hox with natural substrates and the site(s) of substrate interactions and coupling of H2, NAD(P)H, and Fdx remain to be resolved. To address these questions, here we analyzed recombinantly produced HoxEFU by electron paramagnetic resonance spectroscopy and kinetic assays with natural substrates. The purified HoxEFU subcomplex catalyzed electron transfer reactions among NAD(P)H, flavodoxin, and several ferredoxins, thus functioning in vitro as a shuttle among different cyanobacterial pools of reducing equivalents. Both Fdx1-dependent reductions of NAD+ and NADP+ were cooperative. HoxEFU also catalyzed the flavodoxin-dependent reduction of NAD(P)+, Fdx2-dependent oxidation of NADH and Fdx4- and Fdx11-dependent reduction of NAD+ MS-based mapping identified an Fdx1-binding site at the junction of HoxE and HoxF, adjacent to iron-sulfur (FeS) clusters in both subunits. Overall, the reactivity of HoxEFU observed here suggests that it functions in managing peripheral electron flow from photosynthetic electron transfer, findings that reveal detailed insights into how ubiquitous cellular components may be used to allocate energy flow into specific bioenergetic products.


Assuntos
Proteínas de Bactérias/química , Hidrogenase/química , Synechocystis/enzimologia , Catálise , Estrutura Quaternária de Proteína , Especificidade por Substrato
19.
J Am Chem Soc ; 142(3): 1227-1235, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31816235

RESUMO

Hydrogenases display a wide range of catalytic rates and biases in reversible hydrogen gas oxidation catalysis. The interactions of the iron-sulfur-containing catalytic site with the local protein environment are thought to contribute to differences in catalytic reactivity, but this has not been demonstrated. The microbe Clostridium pasteurianum produces three [FeFe]-hydrogenases that differ in "catalytic bias" by exerting a disproportionate rate acceleration in one direction or the other that spans a remarkable 6 orders of magnitude. The combination of high-resolution structural work, biochemical analyses, and computational modeling indicates that protein secondary interactions directly influence the relative stabilization/destabilization of different oxidation states of the active site metal cluster. This selective stabilization or destabilization of oxidation states can preferentially promote hydrogen oxidation or proton reduction and represents a simple yet elegant model by which a protein catalytic site can confer catalytic bias.


Assuntos
Hidrogênio/metabolismo , Hidrogenase/metabolismo , Catálise , Clostridium/enzimologia , Oxirredução , Difração de Raios X
20.
J Biol Chem ; 294(9): 3271-3283, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30567738

RESUMO

Electron bifurcation plays a key role in anaerobic energy metabolism, but it is a relatively new discovery, and only limited mechanistic information is available on the diverse enzymes that employ it. Herein, we focused on the bifurcating electron transfer flavoprotein (ETF) from the hyperthermophilic archaeon Pyrobaculum aerophilum The EtfABCX enzyme complex couples NADH oxidation to the endergonic reduction of ferredoxin and exergonic reduction of menaquinone. We developed a model for the enzyme structure by using nondenaturing MS, cross-linking, and homology modeling in which EtfA, -B, and -C each contained FAD, whereas EtfX contained two [4Fe-4S] clusters. On the basis of analyses using transient absorption, EPR, and optical titrations with NADH or inorganic reductants with and without NAD+, we propose a catalytic cycle involving formation of an intermediary NAD+-bound complex. A charge transfer signal revealed an intriguing interplay of flavin semiquinones and a protein conformational change that gated electron transfer between the low- and high-potential pathways. We found that despite a common bifurcating flavin site, the proposed EtfABCX catalytic cycle is distinct from that of the genetically unrelated bifurcating NADH-dependent ferredoxin NADP+ oxidoreductase (NfnI). The two enzymes particularly differed in the role of NAD+, the resting and bifurcating-ready states of the enzymes, how electron flow is gated, and the two two-electron cycles constituting the overall four-electron reaction. We conclude that P. aerophilum EtfABCX provides a model catalytic mechanism that builds on and extends previous studies of related bifurcating ETFs and can be applied to the large bifurcating ETF family.


Assuntos
Proteínas Arqueais/metabolismo , Biocatálise , Flavoproteínas Transferidoras de Elétrons/metabolismo , NAD/metabolismo , Pyrobaculum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA