RESUMO
Since the groundbreaking approval of the first anti-VEGF therapy in 2004, the retinal therapeutics field has undergone a remarkable transformation, witnessing a surge in novel, disease-modifying therapeutics for a broad spectrum of retinal diseases, extending beyond exudative VEGF-driven conditions. The surge in scientific advancement and the pressing, unmet, medical need have captured the attention of venture capital investors, who have collectively invested close to $10 billion in research and development of new retinal therapeutics between 2004 and 2023. Notably, the field of exudative diseases has gradually shifted away from trying to outcompete anti-VEGF therapeutics towards lowering the overall treatment burden by reducing injection frequency. Simultaneously, a new era has emerged in the non-exudative field, targeting prevalent conditions like dry AMD and rare indications such as Retinitis pigmentosa. This has led to promising drug candidates in development, culminating in the landmark approval of Luxturna for a rare form of Retinitis pigmentosa. The validation of new mechanisms, such as the complement pathway in dry AMD has paved the way for the approvals of Syvovre (Apellis) and Izervay (Iveric/Astellas), marking the first two therapies for this condition. In this comprehensive review, we share our view on the cumulative lessons from the past two decades in developing retinal therapeutics, covering both positive achievements and challenges. We also contextualize the investments, strategic partnering deals, and acquisitions of biotech companies, pharmaceutical companies venture capital investors in retinal therapeutics, respectively. Finally, we provide an outlook and potentially a forward-looking roadmap on novel retinal therapeutics, highlighting the emergence of potential new intervention strategies, such as cell-based therapies, gene editing, and combination therapies. We conclude that upcoming developments have the potential to further stimulate venture capital investments, which ultimately could facilitate the development and delivery of new therapies to patients in need.
Assuntos
Investimentos em Saúde , Retinose Pigmentar , HumanosRESUMO
BACKGROUND: Patients with idiopathic pulmonary fibrosis (IPF) treated with PRM-151, a recombinant human pentraxin 2 protein, in a phase 2 double-blind, randomised controlled trial had significantly reduced decline in percentage of predicted forced vital capacity (FVC) and stabilised 6-min walking distance compared with placebo over a 28-week period. Here we report the 76-week results of an open-label extension study. METHODS: Patients who completed the 28-week double-blind period of the PRM-151-202 trial were eligible to participate in the open-label extension study. Patients previously enrolled in the PRM-151 group continued this treatment and those previously in the placebo group crossed over to PRM-151. All patients received PRM-151 in 28-week cycles with loading doses of 10 mg/kg by 60 min intravenous infusions on days 1, 3, and 5 in the first week of each cycle followed by one infusion of 10 mg/kg every 4 weeks. The primary objective of the open-label extension study was to assess the long-term safety and tolerability of PRM-151, which were assessed by analysing adverse events (AEs) up to week 76 in all patients who received at least one dose of PRM-151 during the open-label extension study. Exploratory efficacy analyses were done by assessing changes from baseline in percentage of predicted FVC and 6-min walking distance, with descriptive statistics to week 76 and with random-intercept mixed models to week 52. This study is registered with ClinicalTrials.gov, number NCT02550873, and with EudraCT, number 2014-004782-24. FINDINGS: Of 116 patients who completed the double-blind treatment period, 111 entered the open-label extension study (74 from the PRM-151 group and 37 from the placebo group). 84 (76%) of 111 patients received concomitant IPF therapy (pirfenidone n=55 or nintedanib n=29). AEs were consistent with long-term IPF sequelae. 31 (28%) patients had serious AEs. Those occurring in two or more patients were pneumonia (six [5%] of 111), IPF exacerbation (four [4%]), IPF progression (four [4%]), and chest pain (two [2%]). 21 (19%) patients had severe AEs, of which IPF exacerbation and IPF progression each occurred in two (2%) patients. Two (2%) patients experienced life-threatening AEs (one had pneumonia and one had small-cell lung cancer extensive stage). A persistent treatment effect was observed for PRM-151 in patients who continued treatment, with a decline in percentage of predicted FVC of -3·6% per year and in 6-min walking distance of -10·5 m per year at week 52. In patients who started PRM-151 during the open-label extension study, compared with the slopes for placebo, decline reduced for percentage of predicted FVC (from -8·7% per year in weeks 0-28 to -0·9% per year in weeks 28-52, p<0·0001) and 6-min walking distance (from -54·9 m per year to -3·5 m per year, p=0·0224). INTERPRETATION: Long-term treatment with PRM-151 was well tolerated and the effects on percentage of predicted FVC and 6-min walking distance were persistent on continuation and positive in patients who crossed over from placebo. These findings support further study of PRM-151 in larger populations of patients with IPF. FUNDING: Promedior.
Assuntos
Proteínas de Homeodomínio/uso terapêutico , Fibrose Pulmonar Idiopática/tratamento farmacológico , Componente Amiloide P Sérico/uso terapêutico , Idoso , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Assistência de Longa Duração , Masculino , Proteínas Recombinantes/uso terapêutico , Resultado do Tratamento , Capacidade VitalRESUMO
Importance: Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with poor prognosis. Approved therapies do not halt disease progression. Objective: To determine the effect of recombinant human pentraxin 2 vs placebo on change from baseline to week 28 in mean forced vital capacity (FVC) percentage of predicted value. Design, Setting, and Participants: Phase 2, randomized, double-blind, placebo-controlled trial conducted at 18 sites in 7 countries of eligible patients with IPF (N = 117; aged 40-80 years; FVC ≥50% and ≤90% predicted; ratio of forced expiratory volume in the first second/FVC >0.70; diffusing capacity for carbon monoxide [Dlco] ≥25% and ≤90% predicted; and distance of ≥150 m on the 6-minute walk test). Study period was August 2015-May 2017. Interventions: Patients were randomized to receive either recombinant human pentraxin 2 (10 mg/kg intravenous every 4 weeks, n = 77) or placebo (n = 39) for 24 weeks, and stratified by concurrent IPF treatment status. Main Outcomes and Measures: The primary end point was the least-squares mean change in FVC percentage of predicted value from baseline to week 28 (minimal clinically important difference, decline of 2%-6%). Secondary end points included mean change in lung volumes (total, normal, and interstitial lung abnormalities) on high-resolution computed tomography (HRCT) and 6-minute walk distance (minimal clinically important difference, 24-45 m). Results: Of 117 randomized patients, 116 received at least 1 dose of study drug (mean age, 68.6 years; 81.0% men; mean time since IPF diagnosis, 3.8 years), and 111 (95.7%) completed the study. The least-squares mean change in FVC percentage of predicted value from baseline to week 28 in patients treated with recombinant human pentraxin 2 was -2.5 vs -4.8 for those in the placebo group (difference, +2.3 [90% CI, 1.1 to 3.5]; P = .001). No significant treatment differences were observed in total lung volume (difference, 93.5 mL [90% CI, -27.7 to 214.7]), quantitative parenchymal features on HRCT (normal lung volume difference, -1.2% [90% CI, -4.4 to 1.9]; interstitial lung abnormalities difference, 1.1% [90% CI, -2.2 to 4.3]), or measurement of Dlco (difference, -0.4 [90% CI, -2.6 to 1.7]). The change in 6-minute walk distance was -0.5 m for patients treated with recombinant human pentraxin 2 vs -31.8 m for those in the placebo group (difference, +31.3 m [90% CI, 17.4 to 45.1]; P < .001). The most common adverse events in the recombinant human pentraxin 2 vs placebo group were cough (18% vs 5%), fatigue (17% vs 10%), and nasopharyngitis (16% vs 23%). Conclusions and Relevance: In this preliminary study, recombinant human pentraxin 2 vs placebo resulted in a slower decline in lung function over 28 weeks for patients with idiopathic pulmonary fibrosis. Further research should more fully assess efficacy and safety. Trial Registration: clinicaltrials.gov Identifier: NCT02550873.
Assuntos
Proteínas de Homeodomínio/uso terapêutico , Fibrose Pulmonar Idiopática/tratamento farmacológico , Componente Amiloide P Sérico/uso terapêutico , Capacidade Vital/efeitos dos fármacos , Idoso , Método Duplo-Cego , Feminino , Proteínas de Homeodomínio/efeitos adversos , Proteínas de Homeodomínio/farmacologia , Humanos , Fibrose Pulmonar Idiopática/fisiopatologia , Análise dos Mínimos Quadrados , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Componente Amiloide P Sérico/efeitos adversos , Componente Amiloide P Sérico/farmacologia , Teste de CaminhadaRESUMO
The ß-haemoglobinopathies are the most prevalent inherited disorders worldwide. Gene therapy of ß-thalassaemia is particularly challenging given the requirement for massive haemoglobin production in a lineage-specific manner and the lack of selective advantage for corrected haematopoietic stem cells. Compound ß(E)/ß(0)-thalassaemia is the most common form of severe thalassaemia in southeast Asian countries and their diasporas. The ß(E)-globin allele bears a point mutation that causes alternative splicing. The abnormally spliced form is non-coding, whereas the correctly spliced messenger RNA expresses a mutated ß(E)-globin with partial instability. When this is compounded with a non-functional ß(0) allele, a profound decrease in ß-globin synthesis results, and approximately half of ß(E)/ß(0)-thalassaemia patients are transfusion-dependent. The only available curative therapy is allogeneic haematopoietic stem cell transplantation, although most patients do not have a human-leukocyte-antigen-matched, geno-identical donor, and those who do still risk rejection or graft-versus-host disease. Here we show that, 33 months after lentiviral ß-globin gene transfer, an adult patient with severe ß(E)/ß(0)-thalassaemia dependent on monthly transfusions since early childhood has become transfusion independent for the past 21 months. Blood haemoglobin is maintained between 9 and 10 g dl(-1), of which one-third contains vector-encoded ß-globin. Most of the therapeutic benefit results from a dominant, myeloid-biased cell clone, in which the integrated vector causes transcriptional activation of HMGA2 in erythroid cells with further increased expression of a truncated HMGA2 mRNA insensitive to degradation by let-7 microRNAs. The clonal dominance that accompanies therapeutic efficacy may be coincidental and stochastic or result from a hitherto benign cell expansion caused by dysregulation of the HMGA2 gene in stem/progenitor cells.
Assuntos
Transfusão de Sangue , Terapia Genética , Proteína HMGA2/metabolismo , Globinas beta/genética , Globinas beta/metabolismo , Talassemia beta/genética , Talassemia beta/terapia , Adolescente , Células Sanguíneas/citologia , Células Sanguíneas/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Pré-Escolar , Células Clonais/metabolismo , Expressão Gênica , Vetores Genéticos/genética , Proteína HMGA2/genética , Homeostase , Humanos , Lentivirus/genética , Masculino , MicroRNAs/genética , Especificidade de Órgãos , RNA Mensageiro/análise , RNA Mensageiro/genética , Fatores de Tempo , Ativação Transcricional , Adulto Jovem , Talassemia beta/metabolismoRESUMO
The pharmacokinetics and pharmacodynamics of a novel liposomal amikacin for inhalation were evaluated in cystic fibrosis patients with chronic pseudomonas infection. Twenty-four patients from two studies received 500 mg of liposomal amikacin by inhalation once daily for 14 days. Serum, sputum, and 24-h urine samples were collected on days 1 and 14 of therapy; pulmonary function tests (PFT) and sputum for quantitative microbiology were assessed at baseline and serially for 14 days. Relationships between amikacin exposure in serum and sputum and absolute change in PFT endpoints and log10 CFU of Pseudomonas aeruginosa from baseline on days 7 and 14 of therapy were assessed. On days 7 and 14, absolute change from baseline in forced expiratory volume in 1 s (FEV1), percent predicted forced expiratory volume in 1 s (FEV1 % predicted), and forced expiratory flow between 25 and 75% of forced vital capacity (FEF(25-75%)) increased by 0.24 (P = 0.002) and 0.13 (P = 0.10) liters, 7.49 (P < 0.001) and 4.38 (P = 0.03), and 0.49 (P < 0.001) and 0.42 (P = 0.02) liters/s, respectively. In addition, relative change from baseline in FEV1 % predicted was 10.8% (P < 0.001) and 5.62% (P = 0.073) on days 7 and 14, respectively. While significant relationships between absolute change in PFT endpoints and the ratio of serum or sputum area under the concentration-time curve to the MIC (AUC/MIC) were not observed, relationships between change in log10 CFU and serum AUC/MIC ratio and change in log10 CFU and absolute changes in all PFT endpoints were significant. Together, these findings likely represent drug effect and warrant the further development of liposomal amikacin for inhalation.