Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825141

RESUMO

Accurate and ex-ante prediction of cows' likelihood of conception (LC) based on milk composition information could improve reproduction management on dairy farms. Milk composition is already routinely measured by mid-infrared (MIR) spectra, which are known to change with advancing stages of pregnancy. For lactating cows, MIR spectra may also be used for predicting the LC. Our objectives were to classify the LC at first insemination using milk MIR spectra data collected from calving to first insemination and to identify the spectral regions that contribute the most to the prediction of LC at first insemination. After quality control, 4,866 MIR spectra, milk production, and reproduction records from 3,451 Holstein cows were used. The classification accuracy and area under the curve (AUC) of 6 models comprising different predictors and 3 machine learning methods were estimated and compared. The results showed that partial least square discriminant analysis (PLS-DA) and random forest had higher prediction accuracies than logistic regression. The classification accuracy of good and poor LC cows and AUC in herd-by-herd validation of the best model were 76.35 ± 10.60% and 0.77 ± 0.11, respectively. All wavenumbers with values of variable importance in the projection higher than 1.00 in PLS-DA belonged to 3 spectral regions, namely from 1,003 to 1,189, 1,794 to 2,260, and 2,300 to 2,660 cm-1. In conclusion, the model can predict LC in dairy cows from a high productive TMR system before insemination with a relatively good accuracy, allowing farmers to intervene in advance or adjust the insemination schedule for cows with a poor predicted LC.

2.
BMC Genomics ; 24(1): 208, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072725

RESUMO

BACKGROUND: De novo mutations arising in the germline are a source of genetic variation and their discovery broadens our understanding of genetic disorders and evolutionary patterns. Although the number of de novo single nucleotide variants (dnSNVs) has been studied in a number of species, relatively little is known about the occurrence of de novo structural variants (dnSVs). In this study, we investigated 37 deeply sequenced pig trios from two commercial lines to identify dnSVs present in the offspring. The identified dnSVs were characterised by identifying their parent of origin, their functional annotations and characterizing sequence homology at the breakpoints. RESULTS: We identified four swine germline dnSVs, all located in intronic regions of protein-coding genes. Our conservative, first estimate of the swine germline dnSV rate is 0.108 (95% CI 0.038-0.255) per generation (one dnSV per nine offspring), detected using short-read sequencing. Two detected dnSVs are clusters of mutations. Mutation cluster 1 contains a de novo duplication, a dnSNV and a de novo deletion. Mutation cluster 2 contains a de novo deletion and three de novo duplications, of which one is inverted. Mutation cluster 2 is 25 kb in size, whereas mutation cluster 1 (197 bp) and the other two individual dnSVs (64 and 573 bp) are smaller. Only mutation cluster 2 could be phased and is located on the paternal haplotype. Mutation cluster 2 originates from both micro-homology as well as non-homology mutation mechanisms, where mutation cluster 1 and the other two dnSVs are caused by mutation mechanisms lacking sequence homology. The 64 bp deletion and mutation cluster 1 were validated through PCR. Lastly, the 64 bp deletion and the 573 bp duplication were validated in sequenced offspring of probands with three generations of sequence data. CONCLUSIONS: Our estimate of 0.108 dnSVs per generation in the swine germline is conservative, due to our small sample size and restricted possibilities of dnSV detection from short-read sequencing. The current study highlights the complexity of dnSVs and shows the potential of breeding programs for pigs and livestock species in general, to provide a suitable population structure for identification and characterisation of dnSVs.


Assuntos
Células Germinativas , Mutação em Linhagem Germinativa , Animais , Suínos/genética , Mutação , Sequenciamento Completo do Genoma , Haplótipos
3.
J Dairy Sci ; 105(10): 8158-8176, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36028351

RESUMO

Resilience is the ability of cows to be minimally affected by disturbances, such as pathogens, heat waves, and changes in feed quality, or to quickly recover. Obvious advantages of resilience are good animal welfare and easy and pleasant management for farmers. Furthermore, economic effects are also expected, but these remain to be determined. The goal of this study was to investigate the association between resilience and lifetime gross margin, using indicators of resilience calculated from fluctuations in daily milk yield using an observational study. Resilience indicators and lifetime gross margin were calculated for 1,325 cows from 21 herds. These cows were not alive anymore and, therefore, had complete lifetime data available for many traits. The resilience indicators were the natural log-transformed variance (LnVar) and the lag-1 autocorrelation (rauto) of daily milk yield deviations from cow-specific lactation curves in parity 1. Good resilience is indicated by low LnVar (small yield response to disturbances) and low rauto (quick yield recovery to baseline). Lifetime gross margin was calculated as the sum of all revenues minus the sum of all costs throughout life. Included revenues were from milk, calf value, and slaughter of the cow. Included costs were from feed, rearing, insemination, management around calving, disease treatments, and destruction in case of death on farm. Feed intake was unknown and, therefore, lifetime feed costs had to be estimated based on milk yield records. The association of each resilience indicator with lifetime gross margin, and also with the underlying revenues and costs, was investigated using analysis of covariance (ANCOVA) models. Mean daily milk yield in first lactation, herd, and year of birth were included as covariates and factors. Natural log-transformed variance had a significantly negative association with lifetime gross margin, which means that cows with stable milk yield (low LnVar, good resilience) in parity 1 generated on average a higher lifetime gross margin than cows that had the same milk yield level but with more fluctuations. The association with lifetime gross margin could be mainly attributed to higher lifetime milk revenues for cows with low LnVar, due to a longer lifespan. Unlike LnVar, rauto was not significantly associated with lifetime gross margin or any of the underlying lifetime costs and revenues. However, it was significantly associated with yearly treatment costs, which is important for ease of management. In conclusion, the importance of resilience for total profit generated by a cow at the end of life was confirmed by the significant association of LnVar with lifetime gross margin, although effects of differences in feed efficiency between resilient and less resilient cows remain to be studied. The economic advantage can be mainly ascribed to benefits of long lifespan.


Assuntos
Indústria de Laticínios , Leite , Animais , Bovinos , Feminino , Lactação/fisiologia , Longevidade , Paridade , Gravidez
4.
Animal ; 15(12): 100411, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34837779

RESUMO

Genotype-by-environment interaction is caused by variation in genetic environmental sensitivity (GES), which can be subdivided into macro- and micro-GES. Macro-GES is genetic sensitivity to macro-environments (definable environments often shared by groups of animals), while micro-GES is genetic sensitivity to micro-environments (individual environments). A combined reaction norm and double hierarchical generalised linear model (RN-DHGLM) allows for simultaneous estimation of base genetic, macro- and micro-GES effects. The accuracy of variance components estimated using a RN-DHGLM has been explicitly studied for balanced data and recommendation of a data size with a minimum of 100 sires with at least 100 offspring each have been made. In the current study, the data size (numbers of sires and progeny) and structure requirements of the RN-DHGLM were investigated for two types of unbalanced datasets. Both datasets had a variable number of offspring per sire, but one dataset also had a variable number of offspring within macro-environments. The accuracy and bias of the estimated macro- and micro-GES effects and the estimated breeding values (EBVs) obtained using the RN-DHGLM depended on the data size. Reasonably accurate and unbiased estimates were obtained with data containing 500 sires with 20 offspring or 100 sires with 50 offspring, regardless of the data structure. Variable progeny group sizes, alone or in combination with an unequal number of offspring within macro-environments, had little impact on the dispersion of the EBVs or the bias and accuracy of variance component estimation, but resulted in lower accuracies of the EBVs. Compared to genetic correlations of zero, a genetic correlation of 0.5 between base genetic, macro- and micro-GES components resulted in a slight decrease in the percentage of replicates that converged out of 100 replicates, but had no effect on the dispersion and accuracy of variance component estimation or the dispersion of the EBVs. The results show that it is possible to apply the RN-DHGLM to unbalanced datasets to obtain estimates of variance due to macro- and micro-GES. Furthermore, the levels of accuracy and bias of variance estimates when analysing macro- and micro-GES simultaneously are determined by average family size, with limited impact from variability in family size and/or cohort size. This creates opportunities for the use of field data from populations with unbalanced data structures when estimating macro- and micro-GES.


Assuntos
Modelos Genéticos , Animais , Genótipo , Modelos Lineares
5.
J Dairy Sci ; 104(7): 8122-8134, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33934864

RESUMO

National and international across-population selection is often recommended and fairly common in the current breeding practice of dairy cattle, with the primary aims to increase genetic gain and genetic variability. The aim of this study was to test the hypothesis that the strategy of truncation selection of sires across populations [i.e., competitive gene flow strategy (CGF)] may not necessarily maximize genetic gain in the long term in the presence of genotype-by-environment interaction (G×E). Two alternative strategies used to be compared with CGF were forced gene flow (FGF) strategies, with 10 or 50% of domestic dams forced to be mated with foreign sires (FGF10%, FGF50%). Two equal-size populations (Ndams = 1,000) that were selected for the same breeding goal trait (h2 = 0.3) under G×E correlation (rg) of either 0.9 or 0.8 were simulated to test these 3 different strategies. Each population first experienced either 5 or 20 differentiation generations (Gd), then 15 migration generations. Discrete generations were simulated for simplicity. Each population performed a within-population conventional breeding program during differentiation generations and the 3 across-population sire selection strategies based on joint genomic prediction during migration generations. The 4 Gd_rg combinations defined 4 different levels of differentiation degree between the 2 populations at the start of migration. The true rate of inbreeding over the last 10 migration generations in each scenario was constrained at 0.01 to provide a fair basis for comparison of genetic gain across scenarios. Results showed that CGF maximized the genetic gain after 15 migration generations in 5_0.9 combination only, the case of the lowest differentiation degree, with a superiority of 0.4% (0.04 genetic SD units) over the suboptimal strategy. While in 5_0.8, 20_0.9, and 20_0.8 combinations, 2 FGF strategies had a superiority in genetic gain of 2.3 to 12.5% (0.21-1.07 genetic SD units) over CGF after 15 migration generations, especially FGF50%. The superiority of FGF strategies over CGF was that they alleviated inbreeding, introduced new genetic variance in the early migration period, and improved accuracy in the entire migration period. Therefore, we concluded that CGF does not necessarily maximize the genetic gain of across-population genomic breeding programs given moderate G×E. The across-population selection strategy remains to be optimized to maximize genetic gain.


Assuntos
Fluxo Gênico , Interação Gene-Ambiente , Animais , Bovinos/genética , Genômica , Genótipo , Modelos Genéticos , Seleção Genética
6.
J Dairy Sci ; 104(7): 8094-8106, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33838884

RESUMO

Resilient cows are minimally affected in their functioning by disturbances, and if affected, they quickly recover. Previously, the variance and autocorrelation of daily deviations from a lactation curve were proposed as resilience indicators. These traits were heritable and genetically associated with good health and longevity. However, it was unknown if selection for these indicators would lead to desired changes in the phenotype. The first aim of this study was to investigate if forward prediction of the resilience indicators in another environment was possible. Therefore, the resilience indicator records were split into 2 subsets, each containing half of the daughters of each sire, split within sire into cows that calved in early year-seasons and cows that calved in more recent year-seasons. Genetic correlations between the subsets were then estimated for each resilience indicator. The second aim was to estimate genetic correlations between the resilience indicators and traits describing production responses to actual disturbances. The disturbances were a heat wave in July 2015 and yield disturbances at herd level. The latter were selected by decreases in mean yield of all primiparous cows in a herd, indicating that a disturbance occurred. The data set used for calculation of the resilience indicators and the traits describing yield responses contained 62,932,794 daily milk yield records on 199,104 primiparous cows. Genetic correlations (rg) between recent and earlier daughter groups were 1 for both resilience indicators, which suggests that selection will result in changes in the phenotype in the next generation. Furthermore, low variance was genetically correlated with weak response in milk yield to both the heat wave and herd disturbances (rg 0.47 to 0.97). Low autocorrelation was genetically correlated with reduced perturbation length and quick recovery after the heat wave and herd disturbances (0.28 to 0.97). These results suggest that variance and autocorrelation cover different aspects of resilience, and should be combined in a resilience index. In conclusion, genetic selection for the resilience indicators will likely result in favorable changes in the traits themselves, and in response and recovery to actual disturbances, which confirms that they are useful resilience indicators.


Assuntos
Temperatura Alta , Lactação , Animais , Bovinos/genética , Feminino , Leite , Núcleo Familiar , Fenótipo
7.
J Dairy Sci ; 104(2): 1967-1981, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33309360

RESUMO

Resilience is the ability of cows to cope with disturbances, such as pathogens or heat waves. To breed for improved resilience, it is important to know whether resilience genetically changes throughout life. Therefore, the aim was to perform a genetic analysis on 2 resilience indicators based on data from 3 periods of the first lactation (d 11-110, 111-210, and 211-340) and the first 3 full lactations, and to estimate genetic correlations with health traits. The resilience indicators were the natural log-transformed variance (LnVar) and lag-1 autocorrelation (rauto) of daily deviations in milk yield from an expected lactation curve. Low LnVar and rauto indicate low variability in daily milk yield and quick recovery, and were expected to indicate good resilience. Data of 200,084 first, 155,784 second, and 89,990 third lactations were used. Heritabilities were similar based on different lactation periods (0.12-0.15 for LnVar, 0.05-0.06 for rauto). However, the heritabilities of the resilience indicators based on full first lactation were higher than those based on lactation periods (0.20 for LnVar, 0.08 for rauto), due to lower residual variances. Heritabilities decreased from 0.20 in full lactation 1 to 0.19 in full lactation 3 for LnVar and from 0.08 to 0.06 for rauto. For LnVar, as well as for rauto, the strongest genetic correlation between lactation periods was between period 2 and 3 (0.97 for LnVar, 0.96 for rauto) and the weakest between period 1 and 3 (0.81 for LnVar, 0.65 for rauto). Similarly, for both traits the genetic correlation between full lactations was strongest between lactations 2 and 3 (0.99 for LnVar, 0.95 for rauto) and weakest between lactations 1 and 3 (0.91 for LnVar, 0.71 for rauto). For LnVar, genetic correlations with resilience-related traits, such as udder health, ketosis, and longevity, adjusted for correlations with milk yield, were almost always favorable (-0.59 to 0.02). In most cases these genetic correlations were stronger based on full lactations than on lactation periods. Genetic correlations were similar across full lactations, but the correlation with udder health increased substantially from -0.31 in lactation 1 to -0.51 in lactation 3. For rauto, genetic correlations with resilience-related traits were always favorable in lactation period 1 and in most full lactations, but not in the other lactation periods. However, correlations were weak (-0.27 to 0.15). Therefore, as a resilience indicator for breeding, LnVar is preferred over rauto. A multitrait index based on estimated breeding values for LnVar in lactations 1, 2, and 3 is recommended to improve resilience throughout the lifetime of a cow.


Assuntos
Bovinos/genética , Lactação/genética , Leite/metabolismo , Animais , Bovinos/fisiologia , Feminino , Testes Genéticos/veterinária , Longevidade , Glândulas Mamárias Animais/fisiologia , Fenótipo
8.
J Dairy Sci ; 104(1): 616-627, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33272577

RESUMO

Resilient cows are minimally affected in their functioning by infections and other disturbances, and recover quickly. Herd management is expected to have an effect on disturbances and the resilience of cows, and this effect was investigated in this study. Two resilience indicators were first recorded on individual cows. The effect of herd-year on these resilience indicators was then estimated and corrected for genetic and year-season effects. The 2 resilience indicators were the variance and the lag-1 autocorrelation of daily milk yield deviations from an expected lactation curve. Low variance and autocorrelation indicate that a cow does not fluctuate much around her expected milk yield and is, thus, subject to few disturbances, or little affected by disturbances (resilient). The herd-year estimates of the resilience indicators were estimated for 9,917 herd-year classes based on records of 227,655 primiparous cows from 2,644 herds. The herd-year estimates of the resilience indicators were then related to herd performance variables. Large differences in the herd-year estimates of the 2 resilience indicators (variance and autocorrelation) were observed between herd-years, indicating an effect of management on these traits. Furthermore, herd-year classes with a high variance tended to have a high proportion of cows with a rumen acidosis indication (r = 0.31), high SCS (r = 0.19), low fat content (r = -0.18), long calving interval (r = 0.14), low survival to second lactation (r = -0.13), large herd size (r = 0.12), low lactose content (r = -0.12), and high production (r = 0.10). These correlations support that herds with high variance are not resilient. The correlation between the variance and the proportion of cows with a rumen acidosis indication suggests that feed management may have an important effect on the variance. Herd-year classes with a high autocorrelation tended to have a high proportion of cows with a ketosis indication (r = 0.14) and a high production (r = 0.13), but a low somatic cell score (r = -0.17) and a low proportion of cows with a rumen acidosis indication (r = -0.12). These correlations suggest that high autocorrelation at herd level indicates either good or poor resilience, and is thus a poor resilience indicator. However, the combination of a high variance and a high autocorrelation is expected to indicate many fluctuations with slow recovery. In conclusion, herd management, in particular feed management, seems to affect herd resilience.


Assuntos
Variação Biológica da População , Bovinos/genética , Indústria de Laticínios , Lactação/genética , Acidose/metabolismo , Acidose/veterinária , Animais , Bovinos/fisiologia , Doenças dos Bovinos/metabolismo , Feminino , Leite , Fenótipo , Rúmen/metabolismo , Estações do Ano
9.
J Dairy Sci ; 103(7): 6332-6345, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32359983

RESUMO

Organic dairy production differs from conventional dairy production in many aspects. However, breeding programs for the 2 production systems are the same in most countries. Breeding goals (BG) might be different for the 2 production systems and genotype × environment interaction may exist between organic and conventional dairy production, both of which have an effect on genetic gain in different breeding strategies. Other aspects also need to be considered, such as the application of multiple ovulation and embryo transfer (MOET), which is not allowed in organic dairy production. The general aim of this research was to assess different environment-specific breeding strategies for organic dairy production. The specific aim was to study differences in BG weights and include the effect of genotype × environment interaction, MOET, and the selection of breeding bulls from the conventional environment. Different scenarios were simulated. In the current scenario, the present-day situation for dairy production in Denmark was emulated as much as possible. The BG was based on a conventional dairy production system, MOET was applied in both environments, and conventional bulls could be selected as breeding bulls in the organic environment. Four alternative scenarios were simulated, all with a specific organic BG in the organic breeding program but differences in the usage of MOET and the selection of conventional bulls as breeding bulls. Implementation of a specific BG in organic dairy production slightly increased genetic gain in the aggregate genotype compared with the breeding program that is currently implemented in organic dairy production. Not using embryo transfer or only selecting breeding bulls from the organic environment decreased genetic gain in the aggregate genotype by as much as 24%. However, the use of embryo transfer is debatable because this is not allowed according to current regulations for organic dairy production. Assessing genetic gain on trait levels showed that a significant increase for functional traits was possible compared with the current breeding program in the organic environment without a decrease in genetic gain in the aggregate genotype. This difference on trait level was even more present when selection of conventional bulls as breeding bulls in the organic environment was not possible. This finding is very relevant when breeding for the desired cow in organic dairy production.


Assuntos
Bovinos/fisiologia , Laticínios , Indústria de Laticínios , Seleção Artificial , Animais , Bovinos/genética , Dinamarca , Transferência Embrionária , Feminino , Genótipo , Masculino , Seleção Genética
10.
J Dairy Sci ; 103(2): 1667-1684, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31759590

RESUMO

The ability of a cow to cope with environmental disturbances, such as pathogens or heat waves, is called resilience. To improve resilience through breeding, we need resilience indicators, which could be based on the fluctuation patterns in milk yield resulting from disturbances. The aim of this study was to explore 3 traits that describe fluctuations in milk yield as indicators for breeding resilient cows: the variance, autocorrelation, and skewness of the deviations from individual lactation curves. We used daily milk yield records of 198,754 first-parity cows, recorded by automatic milking systems. First, we estimated a lactation curve for each cow using 4 different methods: moving average, moving median, quantile regression, and Wilmink curve. We then calculated the log-transformed variance (LnVar), lag-1 autocorrelation (rauto), and skewness (Skew) of the daily deviations from these curves as resilience indicators. A genetic analysis of the resilience indicators was performed, and genetic correlations between resilience indicators and health, longevity, fertility, metabolic, and production traits were estimated. The heritabilities differed between LnVar (0.20 to 0.24), rauto (0.08 to 0.10), and Skew (0.01 to 0.02), and the genetic correlations among the indicators were weak to moderate. For rauto and Skew, genetic correlations with health, longevity, fertility, and metabolic traits were weak or the opposite of what we expected. Therefore, rauto and Skew have limited value as resilience indicators. However, lower LnVar was genetically associated with better udder health (genetic correlations from -0.22 to -0.32), better longevity (-0.28 to -0.34), less ketosis (-0.27 to -0.33), better fertility (-0.06 to -0.17), higher BCS (-0.29 to -0.40), and greater dry matter intake (-0.53 to -0.66) at the same level of milk yield. These correlations support LnVar as an indicator of resilience. Of all 4 curve-fitting methods, LnVar based on quantile regression systematically had the strongest genetic correlations with health, longevity, and fertility traits. Thus, quantile regression is considered the best curve-fitting method. In conclusion, LnVar based on deviations from a quantile regression curve is a promising resilience indicator that can be used to breed cows that are better at coping with disturbances.


Assuntos
Adaptação Fisiológica , Cruzamento , Bovinos , Lactação , Animais , Bovinos/genética , Feminino , Fertilidade/genética , Lactação/genética , Longevidade , Leite , Fenótipo , Gravidez
11.
J Dairy Sci ; 102(9): 8197-8209, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31326182

RESUMO

One joint breeding program (BP) for different dairy cattle environments can be advantageous for genetic gain depending on the genetic correlation between environments (rg). The break-even correlation (rb) refers to the specific rg where genetic gain with 1 joint BP is equal to the genetic gain of 2 environment-specific BP. One joint BP has the highest genetic gain if rg is higher than rb, whereas 2 environment-specific BP have higher genetic gain if rg is lower than rb. Genetic gain in this context is evaluated from a breeding company's perspective that aims to improve genetic gain in both environments. With the implementation of genomic selection, 2 types of collaboration can be identified: exchanging breeding animals and exchanging genomic information. The aim of this study was to study genetic gain in multiple environments with different breeding strategies with genomic selection. The specific aims were (1) to find rb when applying genomic selection; (2) to assess how much genetic gain is lost when applying a suboptimal breeding strategy; (3) to study the effect of the reliability of direct genomic values, number of genotyped animals, and environments of different size on rb and genetic gain; and (4) to find rb from each environment's point of view. Three breeding strategies were simulated: 1 joint BP for both environments, 2 environment-specific BP with selection of bulls across environments, and 2 environment-specific BP with selection of bulls within environments. The rb was 0.65 and not different from rb with progeny-testing breeding programs when compared at the same selection intensity. The maximum loss in genetic gain in a suboptimal breeding strategy was 24%. A higher direct genomic value reliability and an increased number of genotyped selection candidates increased genetic gain, and the effect on rb was not large. A different size in 2 environments decreased rb by, at most, 0.10 points. From a large environment's point of view, 1 joint BP was the optimal breeding strategy in most scenarios. From a small environment's point of view, 1 joint BP was only the optimal breeding strategy at high rg. When the exchange of breeding animals between environments was restricted, genetic gain could still increase in each environment. This was due to the exchange of genomic information between environments, even when rg between environments were as low as 0.4. Thus, genomic selection improves the possibility of applying environment-specific BP.


Assuntos
Bovinos/genética , Interação Gene-Ambiente , Genômica , Seleção Genética , Animais , Cruzamento , Bovinos/fisiologia , Indústria de Laticínios , Feminino , Genótipo , Masculino , Reprodutibilidade dos Testes
12.
J Dairy Sci ; 102(2): 1386-1396, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30617003

RESUMO

Cartesian teat coordinates measured by automatic milking systems (AMS) provide new opportunities to record udder conformation traits and to study changes in udder conformation genetically and phenotypically within and between parities. The objective of this study was to estimate heritabilities and repeatabilities of AMS-based udder conformation traits within parities, to estimate genetic correlations between parities for AMS-based udder conformation traits, and to estimate genetic correlations between AMS-based udder conformation traits and classifier-based udder conformation traits, longevity, and udder health. Data from 70 herds, including 12,663 first-parity cows, 10,206 second-parity cows, and 7,627 third-parity cows, were analyzed using univariate and bivariate mixed animal models. Heritabilities of the AMS udder conformation traits were large (0.37-0.67) and genetic correlations between the AMS udder conformation traits and classifier-based traits were strong (>0.91). Repeatabilities within parities were large as well (0.89-0.97), indicating that a single record on udder conformation per lactation reflects udder conformation well. Genetic correlations of AMS udder conformation traits between parities were strong (0.88-1.00) and were stronger than the permanent environmental correlations. This shows that udder conformation changes over parities, but this change is mostly due to nongenetic factors. Based on these results, the current herd classification system, where cows are scored on udder conformation once in first parity, is sufficient. The AMS udder conformation traits as defined in this study have limited value as replacement for classifier-based udder conformation traits because they have smaller genetic correlations with functional traits than classifier-based traits. In summary, udder conformation hardly changes genetically between parities and is highly repeatable within parities. Udder conformation traits based on AMS need fine-tuning before they can replace classifier-based traits, and AMS teat coordinates probably contain additional information about udder health that is yet to be explored.


Assuntos
Bovinos/genética , Indústria de Laticínios/métodos , Glândulas Mamárias Animais/anatomia & histologia , Animais , Feminino , Genótipo , Lactação , Longevidade , Leite , Paridade , Fenótipo , Gravidez , Característica Quantitativa Herdável , Registros/veterinária , Reprodutibilidade dos Testes
13.
J Dairy Sci ; 101(2): 1240-1250, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29174159

RESUMO

Automatic milking systems record an enormous amount of data on milk yield and the cow itself. These type of big data are expected to contain indicators for health and resilience of cows. In this study, the aim was to define and estimate heritabilities for traits related with fluctuations in daily milk yield and to estimate genetic correlations with existing functional traits, such as udder health, fertility, claw health, ketosis, and longevity. We used daily milk yield records from automatic milking systems of 67,025 lactations in the first parity from 498 herds in the Netherlands. We defined 3 traits related to the number of drops in milk yield using Student t-tests based on either a rolling average (drop rolling average) or a regression (drop regression) and the natural logarithm of the within-cow variance of milk yield (LnVar). Average milk yield was added to investigate the relationships between milk yield and these new traits. ASReml was used to estimate heritabilities, breeding values (EBV), and genetic correlations among these new traits and average milk yield. Approximate genetic correlations were calculated using correlations between EBV of the new traits and existing EBV for health and functional traits correcting for nonunity reliabilities using the Calo method. Partial genetic correlations controlling for persistency and average milk yield and relative contributions to reliability were calculated to investigate whether the new traits add new information to predict fertility, health, and longevity. Heritabilities were 0.08 for drop rolling average, 0.06 for drop regression, and 0.10 for LnVar. Approximate genetic correlations between the new traits and the existing health traits differed quite a bit, with the strongest correlations (-0.29 to -0.52) between LnVar and udder health, ketosis, persistency, and longevity. This study shows that fluctuations in daily milk yield are heritable and that the variance of milk production is best among the 3 fluctuations traits tested to predict udder health, ketosis, and longevity. Using the residual variance of milk production instead of the raw variance is expected to further improve the trait to breed healthy, resilient, and long-lasting dairy cows.


Assuntos
Bovinos/genética , Bovinos/metabolismo , Leite/metabolismo , Animais , Cruzamento , Bovinos/crescimento & desenvolvimento , Feminino , Fertilidade , Lactação , Longevidade , Leite/química , Países Baixos , Paridade , Fenótipo , Gravidez , Característica Quantitativa Herdável
15.
J Anim Sci ; 95(8): 3346-3358, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28805915

RESUMO

Response to infection in animals has 2 main mechanisms: resistance (ability to control pathogen burden) and tolerance (ability to maintain performance given the pathogen burden). Selection on disease resistance and tolerance to infections seems a promising avenue to increase productivity of animals in the presence of disease infections, but it is hampered by a lack of records of pathogen burden of infected animals. Selection on resilience (ability to maintain performance regardless of pathogen burden) may, therefore, be an alternative pragmatic approach, because it does not need records of pathogen burden. Therefore, the aim of this study was to assess response to selection in resistance and tolerance when selecting on resilience compared with direct selection on resistance and tolerance. Monte Carlo simulation was used combined with selection index theory to predict responses to selection. Using EBV for resilience in the absence of records for pathogen burden resulted in favorable responses in resistance and tolerance to infections, with higher responses in tolerance than in resistance. If resistance and tolerance were unfavorably correlated, lower selection responses were obtained, especially in resistance. When the genetic correlation was very unfavorable, the selection response in tolerance became negative. Results showed that lower selection responses in resistance and tolerance were obtained when the frequency of disease outbreaks was 10% rather than 50% of the contemporary groups. The efficiency of selection on EBV for resilience compared with selection on EBV for resistance and tolerance was, however, not affected by the frequency of disease outbreaks. When records on pathogen burden were available, selection responses in resistance, tolerance, and the total breeding goal were 3 to 28%, 66 to 398%, and 2 to 11% higher, respectively, than when using the EBV for resilience, showing a clear benefit of recording pathogen burden. This study shows that selection on resilience is a pragmatic way of increasing disease resistance and tolerance to infections in the absence of records on pathogen burden, but recording pathogen burden would yield higher selection responses in resistance and tolerance.


Assuntos
Resistência à Doença , Seleção Genética , Animais , Cruzamento , Resistência à Doença/genética , Modelos Teóricos , Método de Monte Carlo
16.
J Anim Sci ; 95(7): 3160-3172, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28727117

RESUMO

This study investigated the relationship between ovulation rate (OR) and embryonic characteristics in gilts. Landrace ( = 86) and Yorkshire x Landrace ( = 212) gilts were inseminated with semen stored for 3 to 5 d (SS1, = 59), 6 to7 d (SS2, = 133), or 8 to 10 d (SS3, = 106), and slaughtered at 35 d of pregnancy. Ovulation rate was assessed by dissection of the corpora lutea on both ovaries. Embryos were classified as vital (VE) by visual appearance and individually weighed (VEg) and the SD of the weight calculated (SDVEg). Early embryonic mortality (EM) was estimated as the difference between OR and the number of vital plus nonvital embryos. Embryonic characteristics were analyzed with a model that included linear and quadratic terms of OR and fixed class effects of semen storage duration (SS) and genetic line (GL). Landrace gilts had a higher OR than Yorkshire x Landrace gilts (22.1 ± 0.4 vs. 20.3 ± 0.2, ≤ 0.05) and also a higher EM (6.1 ± 0.4 vs. 3.5 ± 0.3, ≤ 0.05). EM was also higher in gilts inseminated with semen stored for more than 8 d. Also, Yorkshire x Landrace gilts had a higher number of VE (16.9 ± 0.7) than the Landrace gilts (13.3 ± 0.8) when inseminations were done with semen stored for up to 5 d. Yorkshire x Landrace gilts had the highest VEg when inseminated with semen stored for 3 to 5 d (SS1: 4.9 ± 0.2 g, SS2: 4.1 ± 0.1 g, and SS3: 4.0 ± 0.2 g; ≤ 0.05). VE and VEg did not differ within Landrace gilts between different SS classes. A quadratic relationship of OR ( ≤ 0.05) was found with VE: a maximum of 16.8 VE was observed at 26 ovulations [(2.5 (± 0.6)*OR- 0.05 (± 0.01)*OR]. A quadratic relationship of OR ( ≤ 0.05) was also found for EM: a minimum of 3.33 EM was observed at 15 ovulations [(-1.1 (± 0.6)*OR -0.03 (± 0.01)*OR]. VEg was not related with OR, but SDVEg had a positive linear relationship with OR [0.01 (± 0.003)*OR, ≤ 0.05]. Results show that Yorkshire x Landrace gilts perform better than Landrace when inseminated with fresh semen, but not with semen stored for longer time. Also, the VE increases with an increase in OR up to 26, but at a lower level at higher OR, which is likely related with the increase in EM. The higher EM at higher OR might arise from a higher variation in follicular/oocyte quality leading to a higher variation in embryonic quality and development, increasing mortality before uterine implantation and the variation in embryonic weight already at 35 d of pregnancy.


Assuntos
Embrião de Mamíferos/fisiologia , Ovulação/fisiologia , Suínos/fisiologia , Animais , Peso Corporal , Desenvolvimento Embrionário , Feminino , Gravidez , Suínos/embriologia , Fatores de Tempo
17.
J Anim Sci ; 95(4): 1425-1433, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28464101

RESUMO

There is evidence for genetic variability in residual variance of livestock traits, which offers the potential for selection for increased uniformity of production. Different statistical approaches have been employed to study this topic; however, little is known about the concordance between them. The aim of our study was to investigate the genetic heterogeneity of residual variance on yearling weight (YW; 291.15 ± 46.67) in a Nellore beef cattle population; to compare the results of the statistical approaches, the two-step approach and the double hierarchical generalized linear model (DHGLM); and to evaluate the effectiveness of power transformation to accommodate scale differences. The comparison was based on genetic parameters, accuracy of EBV for residual variance, and cross-validation to assess predictive performance of both approaches. A total of 194,628 yearling weight records from 625 sires were used in the analysis. The results supported the hypothesis of genetic heterogeneity of residual variance on YW in Nellore beef cattle and the opportunity of selection, measured through the genetic coefficient of variation of residual variance (0.10 to 0.12 for the two-step approach and 0.17 for DHGLM, using an untransformed data set). However, low estimates of genetic variance associated with positive genetic correlations between mean and residual variance (about 0.20 for two-step and 0.76 for DHGLM for an untransformed data set) limit the genetic response to selection for uniformity of production while simultaneously increasing YW itself. Moreover, large sire families are needed to obtain accurate estimates of genetic merit for residual variance, as indicated by the low heritability estimates (<0.007). Box-Cox transformation was able to decrease the dependence of the variance on the mean and decreased the estimates of genetic parameters for residual variance. The transformation reduced but did not eliminate all the genetic heterogeneity of residual variance, highlighting its presence beyond the scale effect. The DHGLM showed higher predictive ability of EBV for residual variance and therefore should be preferred over the two-step approach.


Assuntos
Bovinos/genética , Regulação da Expressão Gênica , Variação Genética , Animais , Peso Corporal/genética , Cruzamento , Bovinos/crescimento & desenvolvimento , Feminino , Heterogeneidade Genética , Modelos Lineares , Masculino , Fenótipo , Carne Vermelha
18.
J Anim Sci ; 95(4): 1801-1812, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28464113

RESUMO

Aquaculture is the fastest growing food production sector and it contributes significantly to global food security. Based on Food and Agriculture Organization (FAO) of the United Nations, aquaculture production must increase significantly to meet the future global demand for aquatic foods in 2050. According to Intergovernmental Panel on Climate Change (IPCC) and FAO, climate change may result in global warming, sea level rise, changes of ocean productivity, freshwater shortage, and more frequent extreme climate events. Consequently, climate change may affect aquaculture to various extents depending on climatic zones, geographical areas, rearing systems, and species farmed. There are 2 major challenges for aquaculture caused by climate change. First, the current fish, adapted to the prevailing environmental conditions, may be suboptimal under future conditions. Fish species are often poikilothermic and, therefore, may be particularly vulnerable to temperature changes. This will make low sensitivity to temperature more important for fish than for livestock and other terrestrial species. Second, climate change may facilitate outbreaks of existing and new pathogens or parasites. To cope with the challenges above, 3 major adaptive strategies are identified. First, general 'robustness' will become a key trait in aquaculture, whereby fish will be less vulnerable to current and new diseases while at the same time thriving in a wider range of temperatures. Second, aquaculture activities, such as input power, transport, and feed production contribute to greenhouse gas emissions. Selection for feed efficiency as well as defining a breeding goal that minimizes greenhouse gas emissions will reduce impacts of aquaculture on climate change. Finally, the limited adoption of breeding programs in aquaculture is a major concern. This implies inefficient use of resources for feed, water, and land. Consequently, the carbon footprint per kg fish produced is greater than when fish from breeding programs would be more heavily used. Aquaculture should use genetically improved and robust organisms not suffering from inbreeding depression. This will require using fish from well-managed selective breeding programs with proper inbreeding control and breeding goals. Policymakers and breeding organizations should provide incentives to boost selective breeding programs in aquaculture for more robust fish tolerating climatic change.


Assuntos
Mudança Climática , Peixes/genética , Seleção Artificial , Animais , Aquicultura , Pegada de Carbono , Peixes/fisiologia , Abastecimento de Alimentos
19.
J Dairy Sci ; 100(6): 4698-4705, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28365120

RESUMO

Reproductive technologies such as multiple ovulation and embryo transfer (MOET) and ovum pick-up (OPU) accelerate genetic improvement in dairy breeding schemes. To enhance the efficiency of embryo production, breeding values for traits such as number of oocytes (NoO) and number of MOET embryos (NoM) can help in selection of donors with high MOET or OPU efficiency. The aim of this study was therefore to estimate variance components and (genomic) breeding values for NoO and NoM based on Dutch Holstein data. Furthermore, a 10-fold cross-validation was carried out to assess the accuracy of pedigree and genomic breeding values for NoO and NoM. For NoO, 40,734 OPU sessions between 1993 and 2015 were analyzed. These OPU sessions originated from 2,543 donors, from which 1,144 were genotyped. For NoM, 35,695 sessions between 1994 and 2015 were analyzed. These MOET sessions originated from 13,868 donors, from which 3,716 were genotyped. Analyses were done using only pedigree information and using a single-step genomic BLUP (ssGBLUP) approach combining genomic information and pedigree information. Heritabilities were very similar based on pedigree information or based on ssGBLUP [i.e., 0.32 (standard error = 0.03) for NoO and 0.21 (standard error = 0.01) for NoM with pedigree, 0.31 (standard error = 0.03) for NoO, and 0.22 (standard error = 0.01) for NoM with ssGBLUP]. For animals without their own information as mimicked in the cross-validation, the accuracy of pedigree-based breeding values was 0.46 for NoO and NoM. The accuracies of genomic breeding values from ssGBLUP were 0.54 for NoO and 0.52 for NoM. These results show that including genomic information increases the accuracies. These moderate accuracies in combination with a large genetic variance show good opportunities for selection of potential bull dams.


Assuntos
Cruzamento/métodos , Transferência Embrionária/veterinária , Oócitos/citologia , Linhagem , Seleção Genética , Animais , Bovinos , Contagem de Células/veterinária , Transferência Embrionária/estatística & dados numéricos , Feminino , Genoma , Genômica , Genótipo , Masculino , Modelos Genéticos
20.
J Anim Sci ; 94(8): 3185-3197, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27695791

RESUMO

Seasonal infertility is often observed as anestrus and a lower conception rate resulting in a reduced farrowing rate (FR) during late summer and early autumn. This is often regarded as an effect of heat stress; however, we observed a reduction in the FR of sows even after correcting for ambient temperature in our data. Therefore, we added change in photoperiod in the analysis of FR considering its effect on sow fertility. Change in photoperiod was modeled using the cosine of the day of first insemination within a year. On an average, the FR decreased by 2% during early autumn with decreasing daily photoperiod compared with early summer with almost no change in daily photoperiod. It declined 0.2% per degree Celsius of ambient temperature above 19.2°C. This result is a step forward in disentangling the 2 environmental components responsible for seasonal infertility. Our next aim was to estimate the magnitude of genetic variation in FR in response to change in photoperiod and ambient temperature to explore opportunities for selecting pigs to have a constant FR throughout the year. We used reaction norm models to estimate additive genetic variation in response to change in photoperiod and ambient temperature. The results revealed a larger genetic variation at stressful environments when daily photoperiod decreased and ambient temperatures increased above 19.2°C compared with neutral environments. Genetic correlations between stressful environments and nonstressful environments ranged from 0.90 (±0.03) to 0.46 (±0.13) depending on the severity of the stress, indicating changes in expression of FR depending on the environment. The genetic correlation between responses of pigs to changes in photoperiod and to those in ambient temperature were positive, indicating that pigs tolerant to decreasing daily photoperiod are also tolerant to high ambient temperatures. Therefore, selection for tolerance to decreasing daily photoperiod should also increase tolerance to high ambient temperatures or vice versa.


Assuntos
Fertilidade/fisiologia , Variação Genética , Temperatura Alta , Fotoperíodo , Estresse Fisiológico , Suínos/fisiologia , Animais , Feminino , Inseminação , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA