Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 10(1): 405, 2019 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-31864395

RESUMO

BACKGROUND: Myopathy and exercise intolerance are prominent clinical features in carriers of a point-mutation or large-scale deletion in the mitochondrial DNA (mtDNA). In the majority of patients, the mtDNA mutation is heteroplasmic with varying mutation loads between tissues of an individual. Exercise-induced muscle regeneration has been shown to be beneficial in some mtDNA mutation carriers, but is often not feasible for this patient group. In this study, we performed in vitro analysis of mesoangioblasts from mtDNA mutation carriers to assess their potential to be used as source for autologous myogenic cell therapy. METHODS: We assessed the heteroplasmy level of patient-derived mesoangioblasts, isolated from skeletal muscle of multiple carriers of different mtDNA point-mutations (n = 25). Mesoangioblast cultures with < 10% mtDNA mutation were further analyzed with respect to immunophenotype, proliferation capacity, in vitro myogenic differentiation potential, mitochondrial function, and mtDNA quantity. RESULTS: This study demonstrated that mesoangioblasts in half of the patients contained no or a very low mutation load (< 10%), despite a much higher mutation load in their skeletal muscle. Moreover, none of the large-scale mtDNA deletion carriers displayed the deletion in mesoangioblasts, despite high percentages in skeletal muscle. The mesoangioblasts with no or a very low mutation load (< 10%) displayed normal mitochondrial function, proliferative capacity, and myogenic differentiation capacity. CONCLUSIONS: Our data demonstrates that in half of the mtDNA mutation carriers, their mesoangioblasts are (nearly) mutation free and can potentially be used as source for autologous cell therapy for generation of new muscle fibers without mtDNA mutation and normal mitochondrial function.


Assuntos
DNA Mitocondrial/genética , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Mutação/genética , Mioblastos/citologia , Mioblastos/metabolismo , Adolescente , Adulto , Idoso , Proliferação de Células/genética , Proliferação de Células/fisiologia , Células Cultivadas , Criança , Variações do Número de Cópias de DNA/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Regeneração/genética , Regeneração/fisiologia , Adulto Jovem
2.
Front Genet ; 9: 400, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30369941

RESUMO

Mitochondrial disorders, characterized by clinical symptoms and/or OXPHOS deficiencies, are caused by pathogenic variants in mitochondrial genes. However, pathogenic variants in some of these genes can lead to clinical manifestations which overlap with other neuromuscular diseases, which can be caused by pathogenic variants in non-mitochondrial genes as well. Mitochondrial pathogenic variants can be found in the mitochondrial DNA (mtDNA) or in any of the 1,500 nuclear genes with a mitochondrial function. We have performed a two-step next-generation sequencing approach in a cohort of 117 patients, mostly children, in whom a mitochondrial disease-cause could likely or possibly explain the phenotype. A total of 86 patients had a mitochondrial disorder, according to established clinical and biochemical criteria. The other 31 patients had neuromuscular symptoms, where in a minority a mitochondrial genetic cause is present, but a non-mitochondrial genetic cause is more likely. All patients were screened for pathogenic variants in the mtDNA and, if excluded, analyzed by whole exome sequencing (WES). Variants were filtered for being pathogenic and compatible with an autosomal or X-linked recessive mode of inheritance in families with multiple affected siblings and/or consanguineous parents. Non-consanguineous families with a single patient were additionally screened for autosomal and X-linked dominant mutations in a predefined gene-set. We identified causative pathogenic variants in the mtDNA in 20% of the patient-cohort, and in nuclear genes in 49%, implying an overall yield of 68%. We identified pathogenic variants in mitochondrial and non-mitochondrial genes in both groups with, obviously, a higher number of mitochondrial genes affected in mitochondrial disease patients. Furthermore, we show that 31% of the disease-causing genes in the mitochondrial patient group were not included in the MitoCarta database, and therefore would have been missed with MitoCarta based gene-panels. We conclude that WES is preferable to panel-based approaches for both groups of patients, as the mitochondrial gene-list is not complete and mitochondrial symptoms can be secondary. Also, clinically and genetically heterogeneous disorders would require sequential use of multiple different gene panels. We conclude that WES is a comprehensive and unbiased approach to establish a genetic diagnosis in these patients, able to resolve multi-genic disease-causes.

3.
J Pediatr ; 182: 371-374.e2, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28081892

RESUMO

Whole-exome sequencing identified multiple genetic causes in 2 infants with heterogeneous disease. Three gene defects in the first patient explained all symptoms, but manifestations were overlapping (blended phenotype). Two gene defects in the second patient explained nonoverlapping symptoms (composite phenotype). Whole-exome sequencing rapidly and comprehensively resolves heterogeneous genetic disease.


Assuntos
Anormalidades Congênitas/genética , Doenças Genéticas Inatas/diagnóstico , Mutação , Análise de Sequência de DNA/métodos , Amidoidrolases/genética , Hidrolases de Éster Carboxílico/genética , Anormalidades Congênitas/diagnóstico , Exoma/genética , Testes Genéticos/métodos , Genômica , Genótipo , Humanos , Lactente , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos , Testes de Mutagenicidade , Fenótipo , Receptores de Peptídeos/genética , Sensibilidade e Especificidade , Índice de Gravidade de Doença
4.
Front Neurol ; 7: 203, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27899912

RESUMO

In establishing a genetic diagnosis in heterogeneous neurological disease, clinical characterization and whole exome sequencing (WES) go hand-in-hand. Clinical data are essential, not only to guide WES variant selection and define the clinical severity of a genetic defect but also to identify other patients with defects in the same gene. In an infant patient with sensorineural hearing loss, psychomotor retardation, and epilepsy, WES resulted in identification of a novel homozygous CLPP frameshift mutation (c.21delA). Based on the gene defect and clinical symptoms, the diagnosis Perrault syndrome type 3 (PRLTS3) was established. The patient's brain-MRI revealed specific abnormalities of the subcortical and deep cerebral white matter and the middle blade of the corpus callosum, which was used to identify similar patients in the Amsterdam brain-MRI database, containing over 3000 unclassified leukoencephalopathy cases. In three unrelated patients with similar MRI abnormalities the CLPP gene was sequenced, and in two of them novel missense mutations were identified together with a large deletion that covered part of the CLPP gene on the other allele. The severe neurological and MRI abnormalities in these young patients were due to the drastic impact of the CLPP mutations, correlating with the variation in clinical manifestations among previously reported patients. Our data show that similarity in brain-MRI patterns can be used to identify novel PRLTS3 patients, especially during early disease stages, when only part of the disease manifestations are present. This seems especially applicable to the severely affected cases in which CLPP function is drastically affected and MRI abnormalities are pronounced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA