Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Foods Hum Nutr ; 77(2): 198-205, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35397767

RESUMO

Replacing synthetic dyes with natural pigments has gained great attention over the past years in the food industry, due to the increased alertness of consumers for nontoxic and natural additives. Betalains are water-soluble nitrogenous natural pigments that are used as natural colorants in food industries, due to their applicability and their rich pharmacological profile including antioxidant, antimicrobial, and anticancer properties. Therefore, there is a need for a detailed exploration of betalains to fully exploit their properties. Opuntia spp. plants are one of the primary sources of betalains. The objective of this study was to identify betalain phytochemical content in prickly pear cactus of two different Opuntia species from Greece (an Opuntia ficus-indica (L.) Mill (OFI) orange prickly pear cultivar and an Opuntia spp. purple prickly pear cultivar) using modern analytical techniques as also to evaluate their antioxidant and cytotoxicity profile. To achieve this we used an array of analytical techniques, including ultra-violet-vis (UV-Vis) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and liquid chromatography-high resolution mass spectrometry (LC-HRMS) as also cell based in vitro assays. These enabled us to establish a rapid approach that can distinguish the different Opuntia spp. cultivars based on their phytochemical constituents through untargeted metabolomics analysis using ultra-high performance liquid chromatography-mass spectrometry - quadrupole time-of-flight (UPLC/MS Q-TOF). These findings could allow a further exploitation of Opuntia species and especially their enriched betalain phytochemical profile as viable source of natural food colorants.


Assuntos
Citrus sinensis , Opuntia , Antioxidantes/análise , Betalaínas/análise , Betalaínas/química , Betalaínas/farmacologia , Frutas/química , Grécia , Opuntia/química , Compostos Fitoquímicos/análise
2.
Dis Model Mech ; 10(10): 1229-1243, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28798136

RESUMO

Obesity is an independent risk factor for stroke, although several clinical studies have reported that obesity improves stroke outcome. Obesity is hypothesised to aid recovery by protecting against post-stroke catabolism. We therefore assessed whether obese mice had an altered metabolic and inflammatory response to stroke. Obese ob/ob mice underwent a 20-min middle cerebral artery occlusion and 24-h reperfusion. Lipid metabolism and expression of inflammatory cytokines were assessed in the plasma, liver and adipose tissue. The obese-specific metabolic response to stroke was assessed in plasma using non-targeted ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) metabolomics coupled with univariate and multivariate analysis. Obesity had no effect on the extent of weight loss 24 h after stroke but affected the metabolic and inflammatory responses to stroke, predominantly affecting lipid metabolism. Specifically, obese mice had increases in plasma free fatty acids and expression of adipose lipolytic enzymes. Metabolomics identified several classes of metabolites affected by stroke in obese mice, including fatty acids and membrane lipids (glycerophospholipids, lysophospholipids and sphingolipids). Obesity also featured increases in inflammatory cytokines in the plasma and adipose tissue. Overall, these results demonstrate that obesity affected the acute metabolic and inflammatory response to stroke and suggest a potential role for adipose tissue in this effect. These findings could have implications for longer-term recovery and also further highlight the importance of considering comorbidities in preclinical stroke research, especially when identifying biomarkers for stroke. However, further work is required to assess whether these changes translate into long-term effects on recovery.


Assuntos
Tecido Adiposo/metabolismo , Citocinas/sangue , Metabolismo Energético , Infarto da Artéria Cerebral Média/sangue , Mediadores da Inflamação/sangue , Obesidade/sangue , Adipocinas/sangue , Tecido Adiposo/fisiopatologia , Animais , Biomarcadores/sangue , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/sangue , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/fisiopatologia , Lipólise , Fígado/metabolismo , Masculino , Espectrometria de Massas , Metabolômica/métodos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Análise Multivariada , Obesidade/complicações , Obesidade/fisiopatologia , Fatores de Tempo
3.
Exp Eye Res ; 149: 8-15, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27233448

RESUMO

Time-dependent post-mortem biochemical changes have been demonstrated in donor cornea and vitreous, but there have been no published studies to date that objectively measure post-mortem changes in the retinal metabolome over time. The aim of the study was firstly, to investigate post-mortem, time-dependent changes in the rat retinal metabolome and secondly, to compare the metabolite composition of healthy rat ocular tissues. To study post-mortem changes in the rat retinal metabolome, globes were enucleated and stored at 4 °C and sampled at 0, 2, 4, 8, 24 and 48 h post-mortem. To study the metabolite composition of rat ocular tissues, eyes were dissected immediately after culling to isolate the cornea, lens, vitreous and retina, prior to storing at -80 °C. Tissue extracts were subjected to Gas Chromatograph Mass Spectrometry (GC-MS) and Ultra High Performance Liquid Chromatography Mass Spectrometry (UHPLC-MS). Generally, the metabolic composition of the retina was stable for 8 h post-mortem when eyes were stored at 4 °C, but showed increasing changes thereafter. However, some more rapid changes were observed such as increases in TCA cycle metabolites after 2 h post-mortem, whereas some metabolites such as fatty acids only showed decreases in concentration from 24 h. A total of 42 metabolites were identified across the ocular tissues by GC-MS (MSI level 1) and 2782 metabolites were annotated by UHPLC-MS (MSI level 2) according to MSI reporting standards. Many of the metabolites detected were common to all of the tissues but some metabolites showed partitioning between different ocular structures with 655, 297, 93 and 13 metabolites being uniquely detected in the retina, lens, cornea and vitreous respectively. Only a small percentage (1.6%) of metabolites found in the vitreous were only detected in the retina and not other tissues. In conclusion, mass spectrometry-based techniques have been used for the first time to compare the metabolic composition of different ocular tissues. The metabolite composition of the retina stored at 4 °C post-mortem is mostly stable for at least 8 h.


Assuntos
Córnea/metabolismo , Cristalino/metabolismo , Metaboloma/fisiologia , Metabolômica/métodos , Retina/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Córnea/patologia , Cromatografia Gasosa-Espectrometria de Massas , Cristalino/patologia , Masculino , Modelos Animais , Preservação de Órgãos , Ratos , Ratos Sprague-Dawley , Retina/patologia , Fatores de Tempo
4.
Am J Reprod Immunol ; 74(2): 181-99, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25856778

RESUMO

PROBLEM: Antiphospholipid antibodies (aPL) are maternal autoantibodies that increase the risk of a woman developing preeclampsia 10-fold. aPL are internalized into the syncytiotrophoblast and increase extrusion of necrotic trophoblast debris into the maternal blood. This necrotic trophoblast debris may trigger endothelial cell dysfunction contributing to the pathogenesis of preeclampsia. We hypothesize that aPL directly affect placental metabolism, leading to increased syncytiotrophoblast death. METHODS OF STUDY: First and third trimester human placental explants were cultured with aPL, a control antibody, or media only, and placental conditioned culture media was examined by mass spectroscopy. Molecular targets of interest were investigated using qRTPCR and immunohistochemistry. RESULTS: The levels of 79 and 132 metabolites, respectively, were altered due to the treatment of first and third trimester placental explants with aPL. These included ceramides and diacylglycerols, which play important roles in cell death regulatory pathways. Antiphospholipid antibodies also decreased the expression of protein kinase C-epsilon (PRKCE) in placental explants, possibly due to the disrupted balance between ceramides and diacylglycerols caused by aPL. CONCLUSION: One mechanism by which aPL cause aberrant cell death in the syncytiotrophoblast in the first and third trimester is by disruption of placental lipid signaling and decreased expression of PRKCE.


Assuntos
Anticorpos Antifosfolipídeos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Placenta/efeitos dos fármacos , Proteína Quinase C-épsilon/metabolismo , Morte Celular/efeitos dos fármacos , Feminino , Humanos , Metabolômica , Placenta/metabolismo , Gravidez , Primeiro Trimestre da Gravidez/metabolismo , Terceiro Trimestre da Gravidez/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA