Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ultrasonics ; 135: 107127, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37573737

RESUMO

Cardiovascular strain imaging is continually improving due to ongoing advances in ultrasound acquisition and data processing techniques. The phantoms used for validation of new methods are often burdensome to make and lack flexibility to vary mechanical and acoustic properties. Simulations of US imaging provide an alternative with the required flexibility and ground truth strain data. However, the current Lagrangian US strain imaging models cannot simulate heterogeneous speed of sound distributions and higher-order scattering, which limits the realism of the simulations. More realistic Eulerian modelling techniques exist but have so far not been used for strain imaging. In this research, a novel sampling scheme was developed based on a band-limited interpolation of the medium, which enables accurate strain simulation in Eulerian methods. The scheme was validated in k-Wave using various numerical phantoms and by a comparison with Field II. The method allows for simulations with a large range in strain values and was accurate with errors smaller than -60 dB. Furthermore, an excellent agreement with the Fourier theory of US scattering was found. The ability to perform simulations with heterogeneous speed of sound distributions was demonstrated using a pulsating artery model. The developed sampling scheme contributes to more realistic strain imaging simulations, in which the effect of heterogenous acoustic properties can be taken into account.


Assuntos
Acústica , Artérias , Ultrassonografia , Simulação por Computador , Imagens de Fantasmas
2.
Ultrasonics ; 131: 106936, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36774785

RESUMO

Abdominal ultrasound image quality is hampered by phase aberration, that is mainly caused by the large speed-of-sound (SoS) differences between fat and muscle tissue in the abdominal wall. The mismatch between the assumed and actual SoS distribution introduces general blurring of the ultrasound images, and acoustic refraction can lead to geometric distortion of the imaged features. Large aperture imaging or dual-transducer imaging can improve abdominal imaging at deep locations by providing increased contrast and resolution. However, aberration effects for large aperture imaging can be even more severe, which limits its full potential. In this study, a model-based aberration correction method for arbitrary acquisition schemes is introduced for delay-and-sum (DAS) beamforming and its performance was analyzed for both single- and dual-transducer ultrasound imaging. The method employs aberration corrected wavefront arrival times, using manually assigned local SoS values. Two wavefront models were compared. The first model is based on a straight ray approximation, and the second model on the Eikonal equation, which is solved by a multi-stencils fast marching method. Their accuracy for abdominal imaging was evaluated in acoustic simulations and phantom experiments involving tissue-mimicking and porcine material with large SoS contrast (∼100 m/s). The lateral resolution was improved by up to 90% in simulations and up to 65% in experiments compared to standard DAS, in which the use of Eikonal beamforming generally outperformed straight ray beamforming. Moreover, geometric distortions were mitigated in multi-aperture imaging, leading to a reduction in position error of around 80%. A study on the sensitivity of the aberration correction to shape and SoS of aberrating layers was performed, showing that even with imperfect segmentations or SoS values, aberration correction still outperforms standard DAS.


Assuntos
Abdome , Algoritmos , Animais , Suínos , Ultrassonografia/métodos , Abdome/diagnóstico por imagem , Imagens de Fantasmas , Som
3.
Artigo em Inglês | MEDLINE | ID: mdl-36350862

RESUMO

Photoacoustic imaging (PAI) is a promising technique to assess different constituents in tissue. In PAI, the propagating waves are low-amplitude, isotropic, and broadband. A common approach in PAI is the use of a single linear or curved piezoelectric transducer array to perform both PA and ultrasound imaging. These systems provide freedom, agility, and versatility for performing imaging, but have limited field of view (FOV) and directivity that degrade the final image quality. Capacitive micromachined ultrasonic transducers (CMUTs) have a great potential to be used for PAI since they provide larger bandwidth and better cost efficiency. In this study, to improve the FOV, resolution, and contrast, we propose a multiperspective PAI (MP-PAI) approach using multiple CMUTs on a flexible array with shared channels. The designed array was used to perform MP-PAI in an in vitro experiment using a plaque mimicking phantom where the images were compounded both incoherently and coherently. The MP-PAI approach showed a significant improvement in overall image quality. Using only three CMUTs led to about 20% increase in generalized-contrast-to-noise ratio (gCNR), 2-dB improvement in peak signal-to-noise ratio (PSNR), and double the structural coverage in comparison to a single CMUT setup. In numerical studies, the MP-PAI was thoroughly evaluated for both the coherent and incoherent compounding methods. The assessments showed that the image quality further improved for increased number of transducers and angular coverage. For 15 transducers, the improvement for resolution and contrast could be up to three times the amount in a single-perspective image. Nonetheless, the most prominent improvement of MP-PAI was its ability to resolve the structural information of the phantoms.

4.
J Biomed Opt ; 27(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36104838

RESUMO

SIGNIFICANCE: Physics-based simulations of photoacoustic (PA) signals are used to validate new methods, to characterize PA setups and to generate training datasets for machine learning. However, a thoroughly validated PA simulation toolchain that can simulate realistic images is still lacking. AIM: A quantitative toolchain was developed to model PA image acquisition in complex tissues, by simulating both the optical fluence and the acoustic wave propagation. APPROACH: Sampling techniques were developed to decrease artifacts in acoustic simulations. The performance of the simulations was analyzed by measuring the point spread function (PSF) and using a rotatable three-channel phantom, filled with cholesterol, a human carotid plaque sample, and porcine blood. Ex vivo human plaque samples were simulated to validate the methods in more complex tissues. RESULTS: The sampling techniques could enhance the quality of the simulated PA images effectively. The resolution and intensity of the PSF in the turbid medium matched the experimental data well. Overall, the appearance, signal-to-noise ratio and speckle of the images could be simulated accurately. CONCLUSIONS: A PA toolchain was developed and validated, and the results indicate a great potential of PA simulations in more complex and heterogeneous media.


Assuntos
Técnicas Fotoacústicas , Animais , Simulação por Computador , Humanos , Imagens de Fantasmas , Técnicas Fotoacústicas/métodos , Razão Sinal-Ruído , Análise Espectral , Suínos
5.
Artigo em Inglês | MEDLINE | ID: mdl-34780324

RESUMO

Knowledge of aneurysm geometry and local mechanical wall parameters using ultrasound (US) can contribute to a better prediction of rupture risk in abdominal aortic aneurysms (AAAs). However, aortic strain imaging using conventional US is limited by the lateral lumen-wall contrast and resolution. In this study, ultrafast multiperspective bistatic (MP BS) imaging is used to improve aortic US, in which two curved array transducers receive simultaneously on each transmit event. The advantage of such bistatic US imaging on both image quality and strain estimations was investigated by comparing it to single-perspective monostatic (SP MS) and MP monostatic (MP MS) imaging, i.e., alternately transmitting and receiving with either transducer. Experimental strain imaging was performed in US simulations and in an experimental study on porcine aortas. Different compounding strategies were tested to retrieve the most useful information from each received US signal. Finally, apart from the conventional sector grid in curved array US imaging, a polar grid with respect to the vessel's local coordinate system is introduced. This new reconstruction method demonstrated improved displacement estimations in aortic US. The US simulations showed increased strain estimation accuracy using MP BS imaging bistatic imaging compared to MP MS imaging, with a decrease in the average relative error between 41% and 84% in vessel wall regions between transducers. In the experimental results, the mean image contrast-to-noise ratio was improved by up to 8 dB in the vessel wall regions between transducers. This resulted in an increased mean elastographic signal-to-noise ratio by about 15 dB in radial strain and 6 dB in circumferential strain.


Assuntos
Aneurisma da Aorta Abdominal , Técnicas de Imagem por Elasticidade , Animais , Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Estresse Mecânico , Suínos , Ultrassonografia
6.
J Biomed Opt ; 26(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34743446

RESUMO

SIGNIFICANCE: Intraplaque hemorrhage (IPH) is an important indicator of plaque vulnerability. Early detection could aid the prevention of stroke. AIM: We aim to detect IPH with single wavelength PA imaging in vivo and to improve image quality. APPROACH: We developed a singular value decomposition (SVD)-based filter to detect the nonstationary and stationary components in ultrasound data. A PA mask was created to detect stationary (IPH) sources. The method was tested ex vivo using phantoms and in vivo in patients. RESULTS: The flow and IPH channels were successfully separated in the phantom data. We can also detect the PA signals from IPH and reject signals from the carotid lumen in vivo. Generalized contrast-to-noise ratio improved in both ex vivo and in vivo in US imaging. CONCLUSIONS: SVD-based filtering can successfully detect IPH using a single laser wavelength, opening up opportunities for more economical and cost-effective laser sources.


Assuntos
Técnicas Fotoacústicas , Placa Aterosclerótica , Artérias Carótidas/diagnóstico por imagem , Hemorragia/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Placa Aterosclerótica/diagnóstico por imagem
7.
Biomed Opt Express ; 12(7): 4207-4218, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34457409

RESUMO

The main indicator for endarterectomy is the grade of stenosis, which results in severe overtreatment. Photoacoustic imaging (PAI) can provide patient-specific assessment of plaque morphology, and thereby vulnerability. A pilot study of PAI on carotid plaques in patients (n=16) was performed intraoperatively with a hand-held PAI system. By compensating for motion, the photoacoustic (PA) signal-to-noise ratio (SNR) could be increased by 5 dB in vivo. PA signals from hemorrhagic plaques had different characteristics compared to the signals from the carotid blood pool. This study is a key step towards a non-invasive application of PAI to detect vulnerable plaques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA