Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Radiat Oncol ; 19(1): 17, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310249

RESUMO

BACKGROUND: Accelerated partial breast irradiation (APBI) is an alternative breast-conserving therapy approach where radiation is delivered in less time compared to whole breast irradiation (WBI), resulting in improved patient convenience, less toxicity, and cost savings. This prospective randomized study compares the external beam APBI with commonly used moderate hypofractionated WBI in terms of feasibility, safety, tolerance, and cosmetic effects. METHODS: Early breast cancer patients after partial mastectomy were equally randomized into two arms- external APBI and moderate hypofractionated WBI. External beam technique using available technical innovations commonly used in targeted hypofractionated radiotherapy to minimize irradiated volumes was used (cone beam computed tomography navigation to clips in the tumor bed, deep inspiration breath hold technique, volumetric modulated arc therapy dose application, using flattening filter free beams and the six degrees of freedom robotic treatment couch). Cosmetics results and toxicity were evaluated using questionnaires, CTCAE criteria, and photo documentation. RESULTS: The analysis of 84 patients with a median age of 64 years showed significantly fewer acute adverse events in the APBI arm regarding skin reactions, local and general symptoms during a median follow-up of 37 months (range 21-45 months). A significant difference in favor of the APBI arm in grade ≥ 2 late skin toxicity was observed (p = 0.026). Late toxicity in the breast area (deformation, edema, fibrosis, and pain), affecting the quality of life and cosmetic effect, occurred in 61% and 17% of patients in WBI and APBI arms, respectively. The cosmetic effect was more favorable in the APBI arm, especially 6 to 12 months after the radiotherapy. CONCLUSION: External APBI demonstrated better feasibility and less toxicity than the standard regimen in the adjuvant setting for treating early breast cancer patients. The presented study confirmed the level of evidence for establishing the external APBI in daily clinical practice. TRIAL REGISTRATION: NCT06007118.


Assuntos
Neoplasias da Mama , Humanos , Lactente , Pré-Escolar , Feminino , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Neoplasias da Mama/patologia , Qualidade de Vida , Estudos Prospectivos , Mastectomia , Terapia Combinada , Mastectomia Segmentar
2.
Cell Mol Biol Lett ; 28(1): 68, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620794

RESUMO

BACKGROUND: Desmocollin-1 (DSC1) is a desmosomal transmembrane glycoprotein that maintains cell-to-cell adhesion. DSC1 was previously associated with lymph node metastasis of luminal A breast tumors and was found to increase migration and invasion of MCF7 cells in vitro. Therefore, we focused on DSC1 role in cellular and molecular mechanisms in luminal A breast cancer and its possible therapeutic modulation. METHODS: Western blotting was used to select potential inhibitor decreasing DSC1 protein level in MCF7 cell line. Using atomic force microscopy we evaluated effect of DSC1 overexpression and modulation on cell morphology. The LC-MS/MS analysis of total proteome on Orbitrap Lumos and RNA-Seq analysis of total transcriptome on Illumina NextSeq 500 were performed to study the molecular mechanisms associated with DSC1. Pull-down analysis with LC-MS/MS detection was carried out to uncover DSC1 protein interactome in MCF7 cells. RESULTS: Analysis of DSC1 protein levels in response to selected inhibitors displays significant DSC1 downregulation (p-value ≤ 0.01) in MCF7 cells treated with NF-κB inhibitor parthenolide. Analysis of mechanic cell properties in response to DSC1 overexpression and parthenolide treatment using atomic force microscopy reveals that DSC1 overexpression reduces height of MCF7 cells and conversely, parthenolide decreases cell stiffness of MCF7 cells overexpressing DSC1. The LC-MS/MS total proteome analysis in data-independent acquisition mode shows a strong connection between DSC1 overexpression and increased levels of proteins LACRT and IGFBP5, increased expression of IGFBP5 is confirmed by RNA-Seq. Pathway analysis of proteomics data uncovers enrichment of proliferative MCM_BIOCARTA pathway including CDK2 and MCM2-7 after DSC1 overexpression. Parthenolide decreases expression of LACRT, IGFBP5 and MCM_BIOCARTA pathway specifically in DSC1 overexpressing cells. Pull-down assay identifies DSC1 interactions with cadherin family proteins including DSG2, CDH1, CDH3 and tyrosine kinase receptors HER2 and HER3; parthenolide modulates DSC1-HER3 interaction. CONCLUSIONS: Our systems biology data indicate that DSC1 is connected to mechanisms of cell cycle regulation in luminal A breast cancer cells, and can be effectively modulated by parthenolide.


Assuntos
Desmocolinas , Neoplasias , Cromatografia Líquida , Desmocolinas/metabolismo , Proteoma , Espectrometria de Massas em Tandem , Humanos , Células MCF-7 , Sesquiterpenos/farmacologia
3.
Commun Chem ; 6(1): 65, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024672

RESUMO

Nucleic acids aptamers often fail to efficiently target some proteins because of the hydrophilic character of the natural nucleotides. Here we present hydrophobic 7-phenylbutyl-7-deaadenine-modified DNA aptamers against the Heat Shock Protein 70 that were selected via PEX and magnetic bead-based SELEX. After 9 rounds of selection, the pool was sequenced and a number of candidates were identified. Following initial screening, two modified aptamers were chemically synthesised in-house and their binding affinity analysed by two methods, bio-layer interferometry and fluorescent-plate-based binding assay. The binding affinities of the modified aptamers were compared with that of their natural counterparts. The resulting modified aptamers bound with higher affinity (low nanomolar range) to the Hsp70 than their natural sequence (>5 µM) and hence have potential for applications and further development towards Hsp70 diagnostics or even therapeutics.

4.
Cancers (Basel) ; 15(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36980787

RESUMO

Immune checkpoint inhibitors (ICI) are the main therapy currently used in advanced malignant melanoma (MM) and non-small cell lung cancer (NSCLC). Despite the wide variety of uses, the possibility of predicting ICI efficacy in these tumor types is scarce. The aim of our study was to find new predictive biomarkers for ICI treatment. We analyzed, by immunohistochemistry, various cell subsets, including CD3+, CD8+, CD68+, CD20+, and FoxP3+ cells, and molecules such as LAG-3, IDO1, and TGFß. Comprehensive genomic profiles were analyzed. We evaluated 46 patients with advanced MM (31) and NSCLC (15) treated with ICI monotherapy. When analyzing the malignant melanoma group, shorter median progression-free survival (PFS) was found in tumors positive for nuclear FoxP3 in tumor-infiltrating lymphocytes (TILs) (p = 0.048, HR 3.04) and for CD68 expression (p = 0.034, HR 3.2). Longer PFS was achieved in patients with tumors with PD-L1 TPS ≥ 1 (p = 0.005, HR 0.26). In the NSCLC group, only FoxP3 positivity was associated with shorter PFS and OS. We found that FoxP3 negativity was linked with a better response to ICI in both histological groups.

5.
Sci Rep ; 13(1): 1285, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690660

RESUMO

Catechol-O-methyl transferase (COMT) is involved in detoxification of catechol estrogens, playing cancer-protective role in cells producing or utilizing estrogen. Moreover, COMT suppressed migration potential of breast cancer (BC) cells. To delineate COMT role in metastasis of estrogen receptor (ER) dependent BC, we investigated the effect of COMT overexpression on invasion, transcriptome, proteome and interactome of MCF7 cells, a luminal A BC model, stably transduced with lentiviral vector carrying COMT gene (MCF7-COMT). 2D and 3D assays revealed that COMT overexpression associates with decreased cell invasion (p < 0.0001 for Transwell assay, p < 0.05 for spheroid formation). RNA-Seq and LC-DIA-MS/MS proteomics identified genes associated with invasion (FTO, PIR, TACSTD2, ANXA3, KRT80, S100P, PREX1, CLEC3A, LCP1) being downregulated in MCF7-COMT cells, while genes associated with less aggressive phenotype (RBPMS, ROBO2, SELENBP, EPB41L2) were upregulated both at transcript (|log2FC|> 1, adj. p < 0.05) and protein (|log2FC|> 0.58, q < 0.05) levels. Importantly, proteins driving MET signaling were less abundant in COMT overexpressing cells, and pull-down confirmed interaction between COMT and Kunitz-type protease inhibitor 2 (SPINT2), a negative regulator of MET (log2FC = 5.10, q = 1.04-7). In conclusion, COMT may act as tumor suppressor in ER dependent BC not only by detoxification of catechol estrogens but also by suppressing cell invasion and interplay with MET pathway.


Assuntos
Catecol O-Metiltransferase , Neoplasias , Catecol O-Metiltransferase/genética , Espectrometria de Massas em Tandem , Estrogênios/metabolismo , Catecóis , Receptores de Estrogênio/metabolismo , Estrogênios de Catecol
6.
Front Microbiol ; 13: 875556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532480

RESUMO

Defining dynamic protein-protein interactions in the ubiquitin conjugation reaction is a challenging research area. Generating peptide aptamers that target components such as ubiquitin itself, E1, E2, or E3 could provide tools to dissect novel features of the enzymatic cascade. Next-generation deep sequencing platforms were used to identify peptide sequences isolated from phage-peptide libraries screened against Ubiquitin and its ortholog NEDD8. In over three rounds of selection under differing wash criteria, over 13,000 peptides were acquired targeting ubiquitin, while over 10,000 peptides were selected against NEDD8. The overlap in peptides against these two proteins was less than 5% suggesting a high degree in specificity of Ubiquitin or NEDD8 toward linear peptide motifs. Two of these ubiquitin-binding peptides were identified that inhibit both E3 ubiquitin ligases MDM2 and CHIP. NMR analysis highlighted distinct modes of binding of the two different peptide aptamers. These data highlight the utility of using next-generation sequencing of combinatorial phage-peptide libraries to isolate peptide aptamers toward a protein target that can be used as a chemical tool in a complex multi-enzyme reaction.

7.
Leuk Res ; 111: 106684, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34438120

RESUMO

The in vivo rituximab effects in B cell malignancies are only partially understood. Here we analyzed in a large chronic lymphocytic leukemia (CLL) cohort (n = 80) the inter-patient variability in CLL cell count reduction within the first 24 h of rituximab administration in vivo, and a phenomenon of blood repopulation by malignant cells after anti-CD20 antibody therapy. Larger CLL cell elimination after rituximab infusion was associated with lower pre-therapy CLL cell counts, higher CD20 levels, and the non-exhausted capacity of complement-dependent cytotoxicity (CDC). The absolute amount of cell-surface CD20 molecules (CD20 density x CLL lymphocytosis) was a predictor for complement exhaustion during therapy. We also describe that a highly variable decrease in CLL cell counts at 5 h (88 %-2%) following rituximab infusion is accompanied in most patients by peripheral blood repopulation with CLL cells at 24 h, and in ∼20 % of patients, this resulted in CLL counts higher than before therapy. We provide evidence that CLL cells recrudescence is linked with i) CDC exhaustion, which leads to the formation of an insufficient amount of membrane attack complexes, likely resulting in temporary retention of surviving rituximab-opsonized cells by the mononuclear-phagocyte system (followed by their release back to blood), and ii) CLL cells regression from immune niches (CXCR4dimCD5bright intraclonal subpopulation). Patients with major peripheral blood CLL cell repopulation exhibited a longer time-to-progression after chemoimmunotherapy compared to patients with lower or no repopulation, suggesting chemotherapy vulnerability of CLL cells that repopulate the blood.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Proteínas do Sistema Complemento/imunologia , Citotoxicidade Imunológica/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Rituximab/uso terapêutico , Seguimentos , Humanos , Leucemia Linfocítica Crônica de Células B/sangue , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia
8.
Biosensors (Basel) ; 11(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200338

RESUMO

The detection of cancer antigens is a major aim of cancer research in order to develop better patient management through early disease detection. Many cancers including prostate, lung, and ovarian secrete a protein disulfide isomerase protein named AGR2 that has been previously detected in urine and plasma using mass spectrometry. Here we determine whether a previously developed monoclonal antibody targeting AGR2 can be adapted from an indirect two-site ELISA format into a direct detector using solid-phase printed gold electrodes. The screen-printed gold electrode was surface functionalized with the anti-AGR2 specific monoclonal antibody. The interaction of the recombinant AGR2 protein and the anti-AGR2 monoclonal antibody functionalized electrode changed its electrochemical impedance spectra. Nyquist diagrams were obtained after incubation in an increasing concentration of purified AGR2 protein with a range of concentrations from 0.01 fg/mL to 10 fg/mL. In addition, detection of the AGR2 antigen can be achieved from cell lysates in medium or artificial buffer. These data highlight the utility of an AGR2-specific monoclonal antibody that can be functionalized onto a gold printed electrode for a one-step capture and quantitation of the target antigen. These platforms have the potential for supporting methodologies using more complex bodily fluids including plasma and urine for improved cancer diagnostics.


Assuntos
Técnicas Biossensoriais , Mucoproteínas/análise , Proteínas Oncogênicas/análise , Anticorpos Monoclonais , Técnicas Eletroquímicas , Eletrodos , Ouro , Humanos , Limite de Detecção , Nanopartículas Metálicas , Neoplasias
9.
Nat Commun ; 12(1): 713, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514738

RESUMO

Despite proteotoxic stress and heat shock being implicated in diverse pathologies, currently no methodology to inflict defined, subcellular thermal damage exists. Here, we present such a single-cell method compatible with laser-scanning microscopes, adopting the plasmon resonance principle. Dose-defined heat causes protein damage in subcellular compartments, rapid heat-shock chaperone recruitment, and ensuing engagement of the ubiquitin-proteasome system, providing unprecedented insights into the spatiotemporal response to thermal damage relevant for degenerative diseases, with broad applicability in biomedicine. Using this versatile method, we discover that HSP70 chaperone and its interactors are recruited to sites of thermally damaged proteins within seconds, and we report here mechanistically important determinants of such HSP70 recruitment. Finally, we demonstrate a so-far unsuspected involvement of p97(VCP) translocase in the processing of heat-damaged proteins. Overall, we report an approach to inflict targeted thermal protein damage and its application to elucidate cellular stress-response pathways that are emerging as promising therapeutic targets.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico , Análise de Célula Única/métodos , Proteína com Valosina/metabolismo , Linhagem Celular Tumoral , Temperatura Alta/efeitos adversos , Humanos , Nanopartículas Metálicas/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Prata/química , Ressonância de Plasmônio de Superfície , Ubiquitina/metabolismo , Proteína com Valosina/genética
10.
Biochem J ; 478(1): 99-120, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33284343

RESUMO

A comparative canine-human therapeutics model is being developed in B-cell lymphoma through the generation of a hybridoma cell that produces a murine monoclonal antibody specific for canine CD20. The hybridoma cell produces two light chains, light chain-3, and light chain-7. However, the contribution of either light chain to the authentic full-length hybridoma derived IgG is undefined. Mass spectrometry was used to identify only one of the two light chains, light chain-7, as predominating in the full-length IgG. Gene synthesis created a recombinant murine-canine chimeric monoclonal antibody expressing light chain-7 that reconstituted the IgG binding to CD20. Using light chain-7 as a reference sequence, hydrogen deuterium exchange mass spectrometry was used to identify the dominant CDR region implicated in CD20 antigen binding. Early in the deuteration reaction, the CD20 antigen suppressed deuteration at CDR3 (VH). In later time points, deuterium suppression occurred at CDR2 (VH) and CDR2 (VL), with the maintenance of the CDR3 (VH) interaction. These data suggest that CDR3 (VH) functions as the dominant antigen docking motif and that antibody aggregation is induced at later time points after antigen binding. These approaches define a methodology for fine mapping of CDR contacts using nested enzymatic reactions and hydrogen deuterium exchange mass spectrometry. These data support the further development of an engineered, synthetic canine-murine monoclonal antibody, focused on CDR3 (VH), for use as a canine lymphoma therapeutic that mimics the human-murine chimeric anti-CD20 antibody Rituximab.


Assuntos
Anticorpos Monoclonais/química , Antígenos CD20/imunologia , Espectrometria de Massa com Troca Hidrogênio-Deutério , Cadeias Pesadas de Imunoglobulinas/metabolismo , Cadeias Leves de Imunoglobulina/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/genética , Sítios de Ligação de Anticorpos , Linhagem Celular Tumoral , Cromatografia Líquida , Cães , Humanos , Imunoglobulina G/química , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/genética , Cinética , Biblioteca de Peptídeos , Proteínas Recombinantes de Fusão , Espectrometria de Massas em Tandem
11.
Cell Mol Biol Lett ; 25: 41, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32874188

RESUMO

BACKGROUND: The links between the p53/MDM2 pathway and the expression of pro-oncogenic immune inhibitory receptors in tumor cells are undefined. In this report, we evaluate whether there is p53 and/or MDM2 dependence in the expression of two key immune receptors, CD276 and PD-L1. METHODS: Proximity ligation assays were used to quantify protein-protein interactions in situ in response to Nutlin-3. A panel of p53-null melanoma cells was created using CRISPR-Cas9 guide RNA mediated genetic ablation. Flow cytometric analyses were used to assess the impact of TP53 or ATG5 gene ablation, as well as the effects of Nutlin-3 and an ATM inhibitor on cell surface PD-L1 and CD276. Targeted siRNA was used to deplete CD276 to assess changes in cell cycle parameters by flow cytometry. A T-cell proliferation assay was used to assess activity of CD4+ T-cells as a function of ATG5 genotype. RESULTS: CD276 forms protein-protein interactions with MDM2 in response to Nutlin-3, similar to the known MDM2 interactors p53 and HSP70. Isogenic HCT116 p53-wt/null cancer cells demonstrated that CD276 is induced on the cell surface by Nutlin-3 in a p53-dependent manner. PD-L1 was also unexpectedly induced by Nutlin-3, but PD-L1 does not bind MDM2. The ATM inhibitor KU55993 reduced the levels of PD-L1 under conditions where Nutlin-3 induces PD-L1, indicating that MDM2 and ATM have opposing effects on PD-L1 steady-state levels. PD-L1 is also up-regulated in response to genetic ablation of TP53 in A375 melanoma cell clones under conditions in which CD276 remains unaffected. A549 cells with a deletion in the ATG5 gene up-regulated only PD-L1, further indicating that PD-L1 and CD276 are under distinct genetic control. CONCLUSION: Genetic inactivation of TP53, or the use of the MDM2 ligand Nutlin-3, alters the expression of the immune blockade receptors PD-L1 and CD276. The biological function of elevated CD276 is to promote altered cell cycle progression in response to Nutlin-3, whilst the major effect of elevated PD-L1 is T-cell suppression. These data indicate that TP53 gene status, ATM and MDM2 influence PD-L1 and CD276 paralogs on the cell surface. These data have implications for the use of drugs that target the p53 pathway as modifiers of immune checkpoint receptor expression.


Assuntos
Antígenos B7/genética , Antígeno B7-H1/genética , Imidazóis/farmacologia , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Células A549 , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células HCT116 , Humanos , Ligantes , Melanoma/tratamento farmacológico , Proteína Supressora de Tumor p53/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
12.
Biochim Biophys Acta Gen Subj ; 1864(12): 129722, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32866596

RESUMO

BACKGROUND: The identification of mutated proteins in human cancer cells-termed proteogenomics, requires several technologically independent research methodologies including DNA variant identification, RNA sequencing, and mass spectrometry. Any one of these methodologies are not optimized for identifying potential mutated proteins and any one output fails to cover completely a specific landscape. METHODS: An isogenic melanoma cell with a p53-null genotype was created by CRISPR/CAS9 system to determine how p53 gene inactivation affects mutant proteome expression. A mutant peptide reference database was developed by comparing two distinct DNA and RNA variant detection platforms using these isogenic cells. Chemically fractionated tryptic peptides from lysates were processed using a TripleTOF 5600+ mass spectrometer and their spectra were identified against this mutant reference database. RESULTS: Approximately 190 mutated peptides were enriched in wt-p53 cells, 187 mutant peptides were enriched in p53-null cells, with an overlap of 147 mutated peptides. STRING analysis highlighted that the wt-p53 cell line was enriched for mutant protein pathways such as CDC5L and POLR1B, whilst the p53-null cell line was enriched for mutated proteins comprising EGF/YES, Ubiquitination, and RPL26/5 nodes. CONCLUSION: Our study produces a well annotated p53-dependent and p53-independent mutant proteome of a common melanoma cell line model. Coupled to the application of an integrated DNA and RNA variant detection platform (CLCbio) and software for identification of proteins (ProteinPilot), this pipeline can be used to detect high confident mutant proteins in cells. GENERAL SIGNIFICANCE: This pipeline forms a blueprint for identifying mutated proteins in diseased cell systems.


Assuntos
Inativação Gênica , Melanoma/genética , Proteoma/genética , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Proteogenômica
13.
J Photochem Photobiol B ; 209: 111939, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32640366

RESUMO

Despite progress in the development and application of novel therapeutic agents, cancer remains a major cause of death worldwide. Therefore, there is a need for new approaches to increase therapeutic options and efficiency. The metabolism of cancer cells differs from that of non-malignant cells and their mitochondria show altered activities that can be utilized as a target for drug development. Salt 1 is a low-molecular weight heterocyclic compound of the polymethine class that accumulates in the mitochondria of cancer cells and selectively disrupts their metabolism. Salt 1 leads to a non-apoptotic form of cell death in vitro that is associated with an autophagic cellular response and eventual metabolic collapse, and inhibits human tumor xenograft growth in vivo without apparent toxicity for normal cells. As a pentamethinium compound, salt 1 exhibits intrinsic fluorescence and is a candidate for photosensitization after excitation by appropriate wavelengths of light. Herein, we report that salt 1 is a potent photosensitizer, which generates a photodynamic effect and provides enhanced cytotoxicity compared to salt 1 without light exposure. Importantly, photosensitization is optimally induced by red light, which is used clinically for photosensitization and penetrates further into tissues than lower wavelengths. Cancer cells treated with non-cytotoxic doses of salt 1 and subsequently exposed to 630 nm light show severely damaged mitochondria, manifested by reduced mitochondrial membrane potential and disintegration of the mitochondrial tubular network. As a consequence, cancer cells lose their proliferative potential and die via apoptosis in the presence of light. These findings indicate that salt 1 is a promising photosensitizer with potential to be combined with 630 nm light to strengthen its efficacy in cancer therapy.


Assuntos
Apoptose/efeitos dos fármacos , Compostos de Bis-Trimetilamônio/farmacologia , Mitocôndrias/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Linhagem Celular Tumoral , Humanos , Mitocôndrias/fisiologia , Fotoquimioterapia , Espécies Reativas de Oxigênio/metabolismo , Sais/química
14.
J Biol Chem ; 295(27): 8928-8944, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32371396

RESUMO

Translocase of outer mitochondrial membrane 34 (TOMM34) orchestrates heat shock protein 70 (HSP70)/HSP90-mediated transport of mitochondrial precursor proteins. Here, using in vitro phosphorylation and refolding assays, analytical size-exclusion chromatography, and hydrogen/deuterium exchange MS, we found that TOMM34 associates with 14-3-3 proteins after its phosphorylation by protein kinase A (PKA). PKA preferentially targeted two serine residues in TOMM34: Ser93 and Ser160, located in the tetratricopeptide repeat 1 (TPR1) domain and the interdomain linker, respectively. Both of these residues were necessary for efficient 14-3-3 protein binding. We determined that phosphorylation-induced structural changes in TOMM34 are further augmented by binding to 14-3-3, leading to destabilization of TOMM34's secondary structure. We also observed that this interaction with 14-3-3 occludes the TOMM34 interaction interface with ATP-bound HSP70 dimers, which leaves them intact and thereby eliminates an inhibitory effect of TOMM34 on HSP70-mediated refolding in vitro In contrast, we noted that TOMM34 in complex with 14-3-3 could bind HSP90. Both TOMM34 and 14-3-3 participated in cytosolic precursor protein transport mediated by the coordinated activities of HSP70 and HSP90. Our results provide important insights into how PKA-mediated phosphorylation and 14-3-3 binding regulate the availability of TOMM34 for its interaction with HSP70.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP72/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Células MCF-7 , Proteínas de Transporte da Membrana Mitocondrial/genética , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Fosforilação/fisiologia , Ligação Proteica , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Nucleic Acids Res ; 48(12): 6775-6787, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32453417

RESUMO

Cell growth requires a high level of protein synthesis and oncogenic pathways stimulate cell proliferation and ribosome biogenesis. Less is known about how cells respond to dysfunctional mRNA translation and how this feeds back into growth regulatory pathways. The Epstein-Barr virus (EBV)-encoded EBNA1 causes mRNA translation stress in cis that activates PI3Kδ. This leads to the stabilization of MDM2, induces MDM2's binding to the E2F1 mRNA and promotes E2F1 translation. The MDM2 serine 166 regulates the interaction with the E2F1 mRNA and deletion of MDM2 C-terminal RING domain results in a constitutive E2F1 mRNA binding. Phosphorylation on serine 395 following DNA damage instead regulates p53 mRNA binding to its RING domain and prevents the E2F1 mRNA interaction. The p14Arf tumour suppressor binds MDM2 and in addition to preventing degradation of the p53 protein it also prevents the E2F1 mRNA interaction. The data illustrate how two MDM2 domains selectively bind specific mRNAs in response to cellular conditions to promote, or suppress, cell growth and how p14Arf coordinates MDM2's activity towards p53 and E2F1. The data also show how EBV via EBNA1-induced mRNA translation stress targets the E2F1 and the MDM2 - p53 pathway.


Assuntos
Fator de Transcrição E2F1/genética , Neoplasias/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína Supressora de Tumor p53/genética , Carcinogênese/genética , Ciclo Celular/genética , Proliferação de Células/genética , Dano ao DNA/genética , Genes Supressores de Tumor , Herpesvirus Humano 4/genética , Humanos , Neoplasias/virologia , Oncogenes/genética , Fosforilação/genética , Domínios Proteicos/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , RNA Mensageiro/genética , Proteína Supressora de Tumor p14ARF/genética
16.
Br J Cancer ; 122(11): 1590-1603, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32210366

RESUMO

BACKGROUND: Carbonic anhydrase IX (CA IX) is a hypoxia-induced enzyme regulating tumour pH and facilitating cell migration/invasion. It is primarily expressed as a transmembrane cell-surface protein, but its ectodomain can be shed by ADAM17 to extracellular space. This study aims to elucidate the impact of CA IX shedding on cancer cells. METHODS: We generated a non-shed CA IX mutant by deletion of amino acids 393-402 from the stalk region and studied its phenotypic effects compared to full-length, shedding-competent CA IX using a range of assays based on immunodetection, confocal microscopy, in vitro real-time cell monitoring and in vivo tumour cell inoculation using xenografted NMRI and C57BL/6J female mice. RESULTS: We demonstrated that the impairment of shedding does not alter the ability of CA IX to bind ADAM17, internalise, form oligomers and regulate pH, but induces cancer-promoting changes in extracellular proteome. Moreover, it affects intrinsic properties of cells expressing the non-shed variant, in terms of their increased ability to migrate, generate primary tumours and form metastatic lesions in lungs. CONCLUSIONS: Our results show that the ectodomain shedding controls pro-tumorigenic and pro-metastatic roles of the cell-associated CA IX and suggest that this phenomenon should be considered when developing CA IX-targeted therapeutic strategies.


Assuntos
Anidrase Carbônica IX/metabolismo , Carcinogênese/metabolismo , Neoplasias/patologia , Proteína ADAM17/metabolismo , Animais , Carcinogênese/patologia , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Invasividade Neoplásica/patologia , Neoplasias/metabolismo , Fenótipo
17.
Biochim Biophys Acta Gen Subj ; 1864(1): 129458, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676290

RESUMO

BACKGROUND: The Hsp70 proteins maintain proteome integrity through the capacity of their nucleotide- and substrate-binding domains (NBD and SBD) to allosterically regulate substrate affinity in a nucleotide-dependent manner. Crystallographic studies showed that Hsp70 allostery relies on formation of contacts between ATP-bound NBD and an interdomain linker, accompanied by SBD subdomains docking onto distinct sites of the NBD leading to substrate release. However, the mechanics of ATP-induced SBD subdomains detachment is largely unknown. METHODS: Here, we investigated the structural and allosteric properties of human HSPA1A using hydrogen/deuterium exchange mass spectrometry, ATPase assays, surface plasmon resonance and fluorescence polarization-based substrate binding assays. RESULTS: Analysis of HSPA1A proteins bearing mutations at the interface of SBD subdomains close to the interdomain linker (amino acids L399, L510, I515, and D529) revealed that this region forms a folding unit stabilizing the structure of both SBD subdomains in the nucleotide-free state. The introduced mutations modulate HSPA1A allostery as they localize to the NBD-SBD interfaces in the ATP-bound protein. CONCLUSIONS: These findings show that residues forming the hydrophobic structural unit stabilizing the SBD structure are relocated during ATP-activated detachment of the SBD subdomains to different NBD-SBD docking interfaces enabling HSPA1A allostery. GENERAL SIGNIFICANCE: Mutation-induced perturbations tuned HSPA1A sensitivity to peptide/protein substrates and to Hsp40 in a way that is common for other Hsp70 proteins. Our results provide an insight into structural rearrangements in the SBD of Hsp70 proteins and highlight HSPA1A-specific allostery features, which is a prerequisite for selective targeting in Hsp-related pathologies.


Assuntos
Trifosfato de Adenosina/genética , Regulação Alostérica/genética , Proteínas de Choque Térmico HSP70/genética , Conformação Proteica , Trifosfato de Adenosina/química , Sítios de Ligação/genética , Medição da Troca de Deutério , Proteínas de Choque Térmico HSP70/química , Humanos , Mutação/genética , Ligação Proteica/genética , Domínios Proteicos/genética
18.
Proteomics ; 19(21-22): e1900073, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31617665

RESUMO

Biological treatment of many cancers currently targets membrane bound receptors located on a cell surface. To identify novel membrane proteins associated with migration and metastasis of breast cancer cells, a more migrating subpopulation of MDA-MB-231 breast cancer cell line is selected and characterized. A high-resolution quantitative mass spectrometry with SILAC labeling is applied to analyze their surfaceome and it is compared with that of parental MDA-MB-231 cells. Among 824 identified proteins (FDR < 0.01), 128 differentially abundant cell surface proteins with at least one transmembrane domain are found. Of these, i) desmocollin-1 (DSC1) is validated as a protein connected with lymph node status of luminal A breast cancer, tumor grade, and Her-2 status by immunohistochemistry in the set of 96 primary breast tumors, and ii) catechol-O-methyltransferase is successfully verified as a protein associated with lymph node metastasis of triple negative breast cancer as well as with tumor grade by targeted data extraction from the SWATH-MS data of the same set of tissues. The findings indicate importance of both proteins for breast cancer development and metastasis and highlight the potential of biomarker validation strategy via targeted data extraction from SWATH-MS datasets.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Catecol O-Metiltransferase/metabolismo , Movimento Celular , Desmocolinas/metabolismo , Metástase Linfática/patologia , Proteômica , Neoplasias da Mama/genética , Catecol O-Metiltransferase/genética , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular/genética , Desmocolinas/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , Fenótipo , Receptor ErbB-2 , Análise de Sobrevida , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Regulação para Cima/genética
19.
Int J Mol Sci ; 20(17)2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31466233

RESUMO

Cancer cells preferentially utilize glycolysis for ATP production even in aerobic conditions (the Warburg effect) and adapt mitochondrial processes to their specific needs. Recent studies indicate that altered mitochondrial activities in cancer represent an actionable target for therapy. We previously showed that salt 1-3C, a quinoxaline unit (with cytotoxic activity) incorporated into a meso-substituted pentamethinium salt (with mitochondrial selectivity and fluorescence properties), displayed potent cytotoxic effects in vitro and in vivo, without significant toxic effects to normal tissues. Here, we investigated the cytotoxic mechanism of salt 1-3C compared to its analogue, salt 1-8C, with an extended side carbon chain. Live cell imaging demonstrated that salt 1-3C, but not 1-8C, is rapidly incorporated into mitochondria, correlating with increased cytotoxicity of salt 1-3C. The accumulation in mitochondria led to their fragmentation and loss of function, accompanied by increased autophagy/mitophagy. Salt 1-3C preferentially activated AMP-activated kinase and inhibited mammalian target of rapamycin (mTOR) signaling pathways, sensors of cellular metabolism, but did not induce apoptosis. These data indicate that salt 1-3C cytotoxicity involves mitochondrial perturbation and disintegration, and such compounds are promising candidates for targeting mitochondria as a weak spot of cancer.


Assuntos
Antineoplásicos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitofagia , Compostos de Amônio Quaternário/farmacologia , Quinazolinas/farmacologia , Quinases Proteína-Quinases Ativadas por AMP , Antineoplásicos/química , Carbocianinas/química , Linhagem Celular Tumoral , Humanos , Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Compostos de Amônio Quaternário/química , Quinazolinas/química , Serina-Treonina Quinases TOR/metabolismo
20.
Front Physiol ; 10: 390, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024344

RESUMO

Mdm2 and MdmX are related proteins serving in the form of the Mdm2 homodimer or Mdm2/MdmX heterodimer as an E3 ubiquitin ligase for the tumor suppressor p53. The dimerization is required for the E3 activity and is mediated by the conserved RING domains present in both proteins, but only the RING domain of Mdm2 can form homodimers efficiently. We performed a systematic mutational analysis of human Mdm2, exchanging parts of the RING with the corresponding MdmX sequence, to identify the molecular determinants of this difference. Mdm2 can also promote MdmX degradation, and we identified several mutations blocking it. They were located mainly at the Mdm2/E2 interface and did not disrupt the MdmX-Mdm2 interaction. Surprisingly, some mutations of the Mdm2/E2 interface inhibited MdmX degradation, which is mediated by the Mdm2/MdmX heterodimer, but did not affect p53 degradation, mediated by the Mdm2 homodimer. Only one mutant, replacing a conserved cysteine 449 with asparagine (C449N), disrupted the ability of Mdm2 to dimerize with MdmX. When we introduced the cysteine residue into the corresponding site in MdmX, the RING domain became capable of forming dimers with other MdmX molecules in vivo, suggesting that one conserved amino acid residue in the RINGs of Mdm2 and MdmX could serve as the determinant of the differential ability of these domains to form dimers and their E3 activity. In immunoprecipitations, however, the homodimerization of MdmX could be observed only when the asparagine residue was replaced with cysteine in both RINGs. This result suggested that heterocomplexes consisting of one mutated MdmX RING with cysteine and one wild-type MdmX RING with asparagine might be less stable, despite being readily detectable in the cell-based assay. Moreover, Mdm2 C449N blocked Mdm2-MdmX heterodimerization but did not disrupt the ability of Mdm2 homodimer to promote p53 degradation, suggesting that the effect of the conserved cysteine and asparagine residues on dimerization was context-specific. Collectively, our results indicate that the effects of individual exchanges of conserved residues between Mdm2 and MdmX RING domains might be context-specific, supporting the hypothesis that Mdm2 RING homodimers and Mdm2-MdmX heterodimers may not be entirely structurally equivalent, despite their apparent similarity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA