Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 161(1): 196-210, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33745946

RESUMO

BACKGROUND & AIMS: Understanding the mechanisms by which tumors adapt to therapy is critical for developing effective combination therapeutic approaches to improve clinical outcomes for patients with cancer. METHODS: To identify promising and clinically actionable targets for managing colorectal cancer (CRC), we conducted a patient-centered functional genomics platform that includes approximately 200 genes and paired this with a high-throughput drug screen that includes 262 compounds in four patient-derived xenografts (PDXs) from patients with CRC. RESULTS: Both screening methods identified exportin 1 (XPO1) inhibitors as drivers of DNA damage-induced lethality in CRC. Molecular characterization of the cellular response to XPO1 inhibition uncovered an adaptive mechanism that limited the duration of response in TP53-mutated, but not in TP53-wild-type CRC models. Comprehensive proteomic and transcriptomic characterization revealed that the ATM/ATR-CHK1/2 axes were selectively engaged in TP53-mutant CRC cells upon XPO1 inhibitor treatment and that this response was required for adapting to therapy and escaping cell death. Administration of KPT-8602, an XPO1 inhibitor, followed by AZD-6738, an ATR inhibitor, resulted in dramatic antitumor effects and prolonged survival in TP53-mutant models of CRC. CONCLUSIONS: Our findings anticipate tremendous therapeutic benefit and support the further evaluation of XPO1 inhibitors, especially in combination with DNA damage checkpoint inhibitors, to elicit an enduring clinical response in patients with CRC harboring TP53 mutations.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Biomarcadores Tumorais/genética , Neoplasias Colorretais/tratamento farmacológico , Carioferinas/antagonistas & inibidores , Mutação , Inibidores de Proteínas Quinases/administração & dosagem , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Bases de Dados Genéticas , Células HCT116 , Células HT29 , Humanos , Indóis/administração & dosagem , Carioferinas/metabolismo , Camundongos , Morfolinas/administração & dosagem , Piperazinas/administração & dosagem , Piridinas/administração & dosagem , Pirimidinas/administração & dosagem , Receptores Citoplasmáticos e Nucleares/metabolismo , Sulfonamidas/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Exportina 1
2.
J Med Chem ; 63(21): 12957-12977, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33118821

RESUMO

Inhibition of glutaminase-1 (GLS-1) hampers the proliferation of tumor cells reliant on glutamine. Known glutaminase inhibitors have potential limitations, and in vivo exposures are potentially limited due to poor physicochemical properties. We initiated a GLS-1 inhibitor discovery program focused on optimizing physicochemical and pharmacokinetic properties, and have developed a new selective inhibitor, compound 27 (IPN60090), which is currently in phase 1 clinical trials. Compound 27 attains high oral exposures in preclinical species, with strong in vivo target engagement, and should robustly inhibit glutaminase in humans.


Assuntos
Inibidores Enzimáticos/química , Glutaminase/antagonistas & inibidores , Triazóis/farmacocinética , Administração Oral , Animais , Linhagem Celular Tumoral , Cães , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Glutaminase/genética , Glutaminase/metabolismo , Meia-Vida , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Microssomos/metabolismo , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Relação Estrutura-Atividade , Triazóis/química , Triazóis/metabolismo
3.
Cancer Res ; 80(21): 4840-4853, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32928921

RESUMO

Src homology 2 domain-containing phosphatase (SHP2) is a phosphatase that mediates signaling downstream of multiple receptor tyrosine kinases (RTK) and is required for full activation of the MAPK pathway. SHP2 inhibition has demonstrated tumor growth inhibition in RTK-activated cancers in preclinical studies. The long-term effectiveness of tyrosine kinase inhibitors such as the EGFR inhibitor (EGFRi), osimertinib, in non-small cell lung cancer (NSCLC) is limited by acquired resistance. Multiple clinically identified mechanisms underlie resistance to osimertinib, including mutations in EGFR that preclude drug binding as well as EGFR-independent activation of the MAPK pathway through alternate RTK (RTK-bypass). It has also been noted that frequently a tumor from a single patient harbors more than one resistance mechanism, and the plasticity between multiple resistance mechanisms could restrict the effectiveness of therapies targeting a single node of the oncogenic signaling network. Here, we report the discovery of IACS-13909, a specific and potent allosteric inhibitor of SHP2, that suppresses signaling through the MAPK pathway. IACS-13909 potently impeded proliferation of tumors harboring a broad spectrum of activated RTKs as the oncogenic driver. In EGFR-mutant osimertinib-resistant NSCLC models with EGFR-dependent and EGFR-independent resistance mechanisms, IACS-13909, administered as a single agent or in combination with osimertinib, potently suppressed tumor cell proliferation in vitro and caused tumor regression in vivo. Together, our findings provide preclinical evidence for using a SHP2 inhibitor as a therapeutic strategy in acquired EGFRi-resistant NSCLC. SIGNIFICANCE: These findings highlight the discovery of IACS-13909 as a potent, selective inhibitor of SHP2 with drug-like properties, and targeting SHP2 may serve as a therapeutic strategy to overcome tumor resistance to osimertinib.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Experimentais/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Mutação , Neoplasias Experimentais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Med Chem ; 63(17): 9888-9911, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32787110

RESUMO

Tumor-associated macrophages (TAMs) have a significant presence in the tumor stroma across multiple human malignancies and are believed to be beneficial to tumor growth. Targeting CSF1R has been proposed as a potential therapy to reduce TAMs, especially the protumor, immune-suppressive M2 TAMs. Additionally, the high expression of CSF1R on tumor cells has been associated with poor survival in certain cancers, suggesting tumor dependency and therefore a potential therapeutic target. The CSF1-CSF1R signaling pathway modulates the production, differentiation, and function of TAMs; however, the discovery of selective CSF1R inhibitors devoid of type III kinase activity has proven to be challenging. We discovered a potent, highly selective, and orally bioavailable CSF1R inhibitor, IACS-9439 (1). Treatment with 1 led to a dose-dependent reduction in macrophages, promoted macrophage polarization toward the M1 phenotype, and led to tumor growth inhibition in MC38 and PANC02 syngeneic tumor models.


Assuntos
Antineoplásicos/uso terapêutico , Benzotiazóis/uso terapêutico , Neoplasias/tratamento farmacológico , Pirimidinas/uso terapêutico , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Benzotiazóis/síntese química , Benzotiazóis/farmacocinética , Estabilidade de Medicamentos , Humanos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/farmacocinética , Relação Estrutura-Atividade , Células THP-1 , Macrófagos Associados a Tumor/efeitos dos fármacos
5.
Cell Rep ; 26(2): 469-482.e5, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30625329

RESUMO

The plasticity of a preexisting regulatory circuit compromises the effectiveness of targeted therapies, and leveraging genetic vulnerabilities in cancer cells may overcome such adaptations. Hereditary leiomyomatosis renal cell carcinoma (HLRCC) is characterized by oxidative phosphorylation (OXPHOS) deficiency caused by fumarate hydratase (FH) nullizyogosity. To identify metabolic genes that are synthetically lethal with OXPHOS deficiency, we conducted a genetic loss-of-function screen and found that phosphogluconate dehydrogenase (PGD) inhibition robustly blocks the proliferation of FH mutant cancer cells both in vitro and in vivo. Mechanistically, PGD inhibition blocks glycolysis, suppresses reductive carboxylation of glutamine, and increases the NADP+/NADPH ratio to disrupt redox homeostasis. Furthermore, in the OXPHOS-proficient context, blocking OXPHOS using the small-molecule inhibitor IACS-010759 enhances sensitivity to PGD inhibition in vitro and in vivo. Together, our study reveals a dependency on PGD in OXPHOS-deficient tumors that might inform therapeutic intervention in specific patient populations.


Assuntos
Fosforilação Oxidativa , Fosfogluconato Desidrogenase/genética , Mutações Sintéticas Letais , Animais , Linhagem Celular Tumoral , Feminino , Fumarato Hidratase/genética , Genômica/métodos , Glicólise , Humanos , Mutação com Perda de Função , Camundongos , Camundongos Nus
6.
Nat Med ; 24(10): 1627, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30104769

RESUMO

In the version of this article originally published, information regarding several funding sources was omitted from the Acknowledgements section. The following sentences should have been included: "This work was supported by the generous philanthropic contributions to The University of Texas MD Anderson Lung Cancer Moon Shots Program, the UT Lung SPORE 5 P50 CA07090, and the MD Anderson Cancer Center Support Grant P30CA01667. V.P is supported by R01CA155196-01A1 from the National Cancer Institute." Also, reference 18 was incorrect. The original reference was: Kim, E. S. et al. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov. 1, 44-53 (2011). It should have been: Papadimitrakopoulou, V. et al. The BATTLE-2 study: a biomarker-integrated targeted therapy study in previously treated patients with advanced non-small-cell lung cancer. J Clin. Oncol. 34, 3638-3647 (2016). The errors have been corrected in the HTML and PDF versions of this article.

7.
Nat Med ; 24(7): 1047-1057, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29892061

RESUMO

Lung cancer is a devastating disease that remains a top cause of cancer mortality. Despite improvements with targeted and immunotherapies, the majority of patients with lung cancer lack effective therapies, underscoring the need for additional treatment approaches. Genomic studies have identified frequent alterations in components of the SWI/SNF chromatin remodeling complex including SMARCA4 and ARID1A. To understand the mechanisms of tumorigenesis driven by mutations in this complex, we developed a genetically engineered mouse model of lung adenocarcinoma by ablating Smarca4 in the lung epithelium. We demonstrate that Smarca4 acts as a bona fide tumor suppressor and cooperates with p53 loss and Kras activation. Gene expression analyses revealed the signature of enhanced oxidative phosphorylation (OXPHOS) in SMARCA4 mutant tumors. We further show that SMARCA4 mutant cells have enhanced oxygen consumption and increased respiratory capacity. Importantly, SMARCA4 mutant lung cancer cell lines and xenograft tumors have marked sensitivity to inhibition of OXPHOS by a novel small molecule, IACS-010759, that is under clinical development. Mechanistically, we show that SMARCA4-deficient cells have a blunted transcriptional response to energy stress creating a therapeutically exploitable synthetic lethal interaction. These findings provide the mechanistic basis for further development of OXPHOS inhibitors as therapeutics against SWI/SNF mutant tumors.


Assuntos
DNA Helicases/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação/genética , Proteínas Nucleares/genética , Fosforilação Oxidativa , Fatores de Transcrição/genética , Animais , Vias Biossintéticas , Linhagem Celular Tumoral , Respiração Celular , DNA Helicases/deficiência , Metabolismo Energético , Feminino , Engenharia Genética , Humanos , Camundongos Nus , Mitocôndrias/metabolismo , Proteínas Nucleares/deficiência , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/deficiência , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Nat Med ; 24(7): 1036-1046, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29892070

RESUMO

Metabolic reprograming is an emerging hallmark of tumor biology and an actively pursued opportunity in discovery of oncology drugs. Extensive efforts have focused on therapeutic targeting of glycolysis, whereas drugging mitochondrial oxidative phosphorylation (OXPHOS) has remained largely unexplored, partly owing to an incomplete understanding of tumor contexts in which OXPHOS is essential. Here, we report the discovery of IACS-010759, a clinical-grade small-molecule inhibitor of complex I of the mitochondrial electron transport chain. Treatment with IACS-010759 robustly inhibited proliferation and induced apoptosis in models of brain cancer and acute myeloid leukemia (AML) reliant on OXPHOS, likely owing to a combination of energy depletion and reduced aspartate production that leads to impaired nucleotide biosynthesis. In models of brain cancer and AML, tumor growth was potently inhibited in vivo following IACS-010759 treatment at well-tolerated doses. IACS-010759 is currently being evaluated in phase 1 clinical trials in relapsed/refractory AML and solid tumors.


Assuntos
Neoplasias/patologia , Fosforilação Oxidativa , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Metabolismo Energético , Glicólise/efeitos dos fármacos , Células HEK293 , Humanos , Ácido Láctico/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Mitocôndrias/metabolismo , Nucleotídeos/biossíntese , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
9.
PLoS One ; 5(10): e13654, 2010 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-21048919

RESUMO

Rpn13 is a novel mammalian proteasomal receptor that has recently been identified as an amplification target in ovarian cancer. It can interact with ubiquitin and activate the deubiquitinating enzyme Uch37 at the 26S proteasome. Since neither Rpn13 nor Uch37 is an integral proteasomal subunit, we explored whether either protein is essential for mammalian development and survival. Deletion of Uch37 resulted in prenatal lethality in mice associated with severe defect in embryonic brain development. In contrast, the majority of Rpn13-deficient mice survived to adulthood, although they were smaller at birth and fewer in number than wild-type littermates. Absence of Rpn13 produced tissue-specific effects on proteasomal function: increased proteasome activity in adrenal gland and lymphoid organs, and decreased activity in testes and brain. Adult Rpn13(-/-) mice reached normal body weight but had increased body fat content and were infertile due to defective gametogenesis. Additionally, Rpn13(-/-) mice showed increased T-cell numbers, resembling growth hormone-mediated effects. Indeed, serum growth hormone and follicular stimulating hormone levels were significantly increased in Rpn13(-/-) mice, while growth hormone receptor expression was reduced in the testes. In conclusion, this is the first report characterizing the physiological roles of Uch37 and Rpn13 in murine development and implicating a non-ATPase proteasomal protein, Rpn13, in the process of gametogenesis.


Assuntos
Glicoproteínas de Membrana/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Sequência de Bases , Western Blotting , Primers do DNA , Citometria de Fluxo , Camundongos , Camundongos Mutantes , Ressonância Magnética Nuclear Biomolecular , Oogênese/fisiologia , RNA Mensageiro/genética , Espermatogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA