Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 84: 128-144, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908817

RESUMO

Chinese hamster ovary (CHO) cells require cysteine for growth and productivity in fed-batch cultures. In intensified processes, supplementation of cysteine at high concentrations is a challenge due to its limited solubility and instability in solution. Methionine can be converted to cysteine (CYS) but key enzymes, cystathionine beta-synthase (Cbs) and cystathionine gamma-lyase (Cth), are not active in CHO cells resulting in accumulation of an intermediate, homocysteine (HCY), in cell culture milieu. In this study, Cbs and Cth were overexpressed in CHO cells to confer cysteine prototrophy, i.e., the ability to grow in a cysteine free environment. These pools (CbCt) needed homocysteine and beta-mercaptoethanol (ßME) to grow in CYS-free medium. To increase intracellular homocysteine levels, Gnmt was overexpressed in CbCt pools. The resultant cell pools (GnCbCt), post adaptation in CYS-free medium with decreasing residual HCY and ßME levels, were able to proliferate in the HCY-free, ßME-free and CYS-free environment. Interestingly, CbCt pools were also able to be adapted to grow in HCY-free and CYS-free conditions, albeit at significantly higher doubling times than GnCbCt cells, but couldn't completely adapt to ßME-free conditions. Further, single cell clones derived from the GnCbCt cell pool had a wide range in expression levels of Cbs, Cth and Gnmt and, when cultivated in CYS-free fed-batch conditions, performed similarly to the wild type (WT) cell line cultivated in CYS supplemented fed-batch culture. Intracellular metabolomic analysis showed that HCY and glutathione (GSH) levels were lower in the CbCt pool in CYS-free conditions but were restored closer to WT levels in the GnCbCt cells cultivated in CYS-free conditions. Transcriptomic analysis showed that GnCbCt cells upregulated several genes encoding transporters as well as methionine catabolism and transsulfuration pathway enzymes that support these cells to biosynthesize cysteine effectively. Further, 'omics analysis suggested CbCt pool was under ferroptotic stress in CYS-free conditions, which, when inhibited, enhanced the growth and viability of these cells in CYS-free conditions.

2.
Biotechnol Bioeng ; 118(12): 4786-4799, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34569627

RESUMO

Chinese hamster ovary (CHO) cells in fed-batch cultures produce several metabolic byproducts derived from amino acid catabolism, some of which accumulate to growth inhibitory levels. Controlling the accumulation of these byproducts has been shown to significantly enhance cell proliferation. Interestingly, some of these byproducts have physiological roles that go beyond inhibition of cell proliferation. In this study, we show that, in CHO cell fed-batch cultures, branched-chain amino acid (BCAA) catabolism contributes to the formation of butyrate, a novel byproduct that is also a well-established specific productivity enhancer. We further show that other byproducts of BCAA catabolism, namely isovalerate and isobutyrate, which accumulate in CHO cell fed-batch cultures, also enhance specific productivity. Lastly, we show that the rate of production of these BCAA catabolic byproducts is negatively correlated with glucose uptake and lactate production rates. Thus, limiting glucose supply to suppress glucose uptake and lactate production, as in the case of fed-batch cultures employing high-end pH-controlled delivery of glucose (HiPDOG) technology, significantly enhances BCAA catabolic byproduct accumulation, resulting in higher specific productivities.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Butiratos/metabolismo , Aminoácidos de Cadeia Ramificada/análise , Animais , Reatores Biológicos , Butiratos/análise , Células CHO , Cricetinae , Cricetulus , Meios de Cultura/química , Meios de Cultura/metabolismo , Glucose/metabolismo
3.
Trends Biotechnol ; 38(10): 1113-1127, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32941791

RESUMO

Mammalian cells are the main tool for the production of therapeutic proteins, viruses for gene therapy, and cells for cell therapy. In production processes cell metabolism is the main driver that causes changes in the growth environment and affects productivity and product quality. Of all nutrients, glucose has the most prominent impact on bioprocesses. We summarize recent findings on the regulation of glucose and energy metabolism in cultured cells. Local allosteric regulations and post-translational modifications of enzymes in metabolic networks interplay with global signaling and transcriptional regulation. These regulatory networks sustain homeostasis across the cytosolic and mitochondrial compartments. Understanding the regulation of glucose metabolism and metabolic state is crucial for enhancing process productivity and product quality.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/métodos , Homeostase , Redes e Vias Metabólicas/fisiologia , Animais , Bioengenharia , Metabolismo Energético/fisiologia , Glucose/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Transdução de Sinais/fisiologia
5.
Biotechnol Bioeng ; 116(9): 2223-2235, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31062870

RESUMO

Biomanufacturing exhibits inherent variability that can lead to variation in performance attributes and batch failure. To help ensure process consistency and product quality the development of predictive models and integrated control strategies is a promising approach. In this study, a feedback controller was developed to limit excessive lactate production, a widespread metabolic phenomenon that is negatively associated with culture performance and product quality. The controller was developed by applying machine learning strategies to historical process development data, resulting in a forecast model that could identify whether a run would result in lactate consumption or accumulation. In addition, this exercise identified a correlation between increased amino acid consumption and low observed lactate production leading to the mechanistic hypothesis that there is a deficiency in the link between glycolysis and the tricarboxylic acid cycle. Using the correlative process parameters to build mechanistic insight and applying this to predictive models of lactate concentration, a dynamic model predictive controller (MPC) for lactate was designed. This MPC was implemented experimentally on a process known to exhibit high lactate accumulation and successfully drove the cell cultures towards a lactate consuming state. In addition, an increase in specific titer productivity was observed when compared with non-MPC controlled reactors.


Assuntos
Ciclo do Ácido Cítrico , Glicólise , Ácido Láctico/metabolismo , Modelos Biológicos , Animais , Células CHO , Cricetinae , Cricetulus , Previsões
6.
Nat Chem Biol ; 15(7): 730-736, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31110306

RESUMO

N-linked glycosylation in monoclonal antibodies (mAbs) is crucial for structural and functional properties of mAb therapeutics, including stability, pharmacokinetics, safety and clinical efficacy. The biopharmaceutical industry currently lacks tools to precisely control N-glycosylation levels during mAb production. In this study, we engineered Chinese hamster ovary cells with synthetic genetic circuits to tune N-glycosylation of a stably expressed IgG. We knocked out two key glycosyltransferase genes, α-1,6-fucosyltransferase (FUT8) and ß-1,4-galactosyltransferase (ß4GALT1), genomically integrated circuits expressing synthetic glycosyltransferase genes under constitutive or inducible promoters and generated antibodies with concurrently desired fucosylation (0-97%) and galactosylation (0-87%) levels. Simultaneous and independent control of FUT8 and ß4GALT1 expression was achieved using orthogonal small molecule inducers. Effector function studies confirmed that glycosylation profile changes affected antibody binding to a cell surface receptor. Precise and rational modification of N-glycosylation will allow new recombinant protein therapeutics with tailored in vitro and in vivo effects for various biotechnological and biomedical applications.


Assuntos
Anticorpos Monoclonais/biossíntese , Engenharia Celular , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Anticorpos Monoclonais/química , Células CHO , Cricetulus , Glicosilação/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química
7.
Metab Eng ; 54: 54-68, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30851381

RESUMO

Chinese hamster ovary (CHO) cells in fed-batch cultures are known to consume large amounts of nutrients and divert significant portion of them towards the formation of byproducts, some of which, including lactate and ammonia, are known to be growth inhibitory in nature. A major fraction of these inhibitory metabolites are byproducts or intermediates of amino acid catabolism. Limiting the supply of amino acids has been shown to curtail the production of corresponding inhibitory byproducts resulting in enhanced growth and productivities in CHO cell fed-batch cultures (Mulukutla et al., 2017). In the current study, metabolic engineering of CHO cells was undertaken in order to reduce the biosynthesis of these novel growth inhibitors. Phenylalanine-tyrosine (Phe-Tyr) and branched chain amino acid (BCAA) catabolic pathways were engineered as part of this effort. Four genes that encode enzymes in the Phe-Tyr pathway, which were observed to be minimally expressed in CHO cells, were in turn overexpressed. Metabolically engineered cells were prototrophic to tyrosine and had reduced production of the inhibitory byproducts from Phe-Tyr pathway including 3-phenyllactate and 4-hydroxyphenyllactate. In case of BCAA catabolic pathway, branched chain aminotransferase 1 (BCAT1) gene, which encodes the enzyme that catalyzes the first step in the catabolism of BCAAs, was knocked out in CHO cells. Knockout (KO) of BCAT1 function completely eliminated production of inhibitory byproducts from BCAA catabolic pathway, including isovalerate, isobutyrate and 2-methylbutyrate, resulting in significantly enhanced cell growth and productivities in fed-batch cultures. This study is first of its kind to demonstrate that metabolic engineering of essential amino acid metabolism of CHO cells can significantly improve cell culture process performance.


Assuntos
Técnicas de Cultura Celular por Lotes , Inibidores do Crescimento/biossíntese , Inibidores do Crescimento/genética , Engenharia Metabólica , Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus
8.
iScience ; 12: 102-120, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30682623

RESUMO

N-linked glycosylation affects the potency, safety, immunogenicity, and pharmacokinetic clearance of several therapeutic proteins including monoclonal antibodies. A robust control strategy is needed to dial in appropriate glycosylation profile during the course of cell culture processes accurately. However, N-glycosylation dynamics remains insufficiently understood owing to the lack of integrative analyses of factors that influence the dynamics, including sugar nucleotide donors, glycosyltransferases, and glycosidases. Here, an integrative approach involving multi-dimensional omics analyses was employed to dissect the temporal dynamics of glycoforms produced during fed-batch cultures of CHO cells. Several pathways including glycolysis, tricarboxylic citric acid cycle, and nucleotide biosynthesis exhibited temporal dynamics over the cell culture period. The steps involving galactose and sialic acid addition were determined as temporal bottlenecks. Our results show that galactose, and not manganese, is able to mitigate the temporal bottleneck, despite both being known effectors of galactosylation. Furthermore, sialylation is limited by the galactosylated precursors and autoregulation of cytidine monophosphate-sialic acid biosynthesis.

9.
Biotechnol Bioeng ; 114(8): 1779-1790, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28409820

RESUMO

Chinese hamster ovary (CHO) cells in culture are known to consume large amounts of nutrients and divert most of them toward byproducts, some of which, including lactate and ammonia, are known to be toxic in nature. Glucose limitation strategies can successfully control lactate accumulation in fed-batch cultures yielding higher peak cell densities and titers. Interestingly, even in such optimized cultures, cell growth slows and eventually stops, indicating the emergence of other factors that negatively affect cell growth. In this study, we employed omics techniques to identify and quantify nine compounds that are intermediates or byproducts of amino acid metabolism, and accumulate in fed-batch cultures. Treatment with these compounds either individually or in a combined fashion resulted in partial or complete cell growth inhibition. Careful control of selected amino acid concentrations between one-half and one millimolar during the growth phase of fed-batch cultures reduced accumulation of the inhibitory metabolites and allowed for higher peak cell densities and increased productivity. Biotechnol. Bioeng. 2017;114: 1779-1790. © 2017 Wiley Periodicals, Inc.


Assuntos
Amônia/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Proliferação de Células/fisiologia , Glucose/metabolismo , Inibidores do Crescimento/metabolismo , Ácido Láctico/metabolismo , Aminoácidos/metabolismo , Animais , Reatores Biológicos , Células CHO , Contagem de Células , Sobrevivência Celular/fisiologia , Cricetulus , Meios de Cultura/química
10.
Trends Biotechnol ; 34(8): 638-651, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27265890

RESUMO

Cultured mammalian cells are the main workhorses for producing biologics. The performance of these cell culture processes, in terms of both productivity and product quality attributes, is significantly influenced by cellular metabolism. Glucose is the major carbon source for cellular biosynthesis and energy generation. We summarize here recent advances in our understanding of the regulation of glucose metabolism in cultured cells. The versatility of cells to sustain homeostatic states under widely varying environments is made possible by allosteric regulation of the metabolic network, interplay between the signaling pathways, and transcription factors. Understanding the regulation of metabolism holds the key to altering the metabolic regulatory circuit and implementing direct metabolic control over cell culture processes.


Assuntos
Fenômenos Fisiológicos Celulares , Metabolismo Energético/fisiologia , Regulação da Expressão Gênica/fisiologia , Glucose/metabolismo , Redes e Vias Metabólicas/fisiologia , Metaboloma/fisiologia , Modelos Biológicos , Animais , Retroalimentação Fisiológica/fisiologia , Humanos
11.
PLoS One ; 10(3): e0121561, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25806512

RESUMO

Cultured mammalian cells exhibit elevated glycolysis flux and high lactate production. In the industrial bioprocesses for biotherapeutic protein production, glucose is supplemented to the culture medium to sustain continued cell growth resulting in the accumulation of lactate to high levels. In such fed-batch cultures, sometimes a metabolic shift from a state of high glycolysis flux and high lactate production to a state of low glycolysis flux and low lactate production or even lactate consumption is observed. While in other cases with very similar culture conditions, the same cell line and medium, cells continue to produce lactate. A metabolic shift to lactate consumption has been correlated to the productivity of the process. Cultures that exhibited the metabolic shift to lactate consumption had higher titers than those which didn't. However, the cues that trigger the metabolic shift to lactate consumption state (or low lactate production state) are yet to be identified. Metabolic control of cells is tightly linked to growth control through signaling pathways such as the AKT pathway. We have previously shown that the glycolysis of proliferating cells can exhibit bistability with well-segregated high flux and low flux states. Low lactate production (or lactate consumption) is possible only at a low glycolysis flux state. In this study, we use mathematical modeling to demonstrate that lactate inhibition together with AKT regulation on glycolysis enzymes can profoundly influence the bistable behavior, resulting in a complex steady-state topology. The transition from the high flux state to the low flux state can only occur in certain regions of the steady state topology, and therefore the metabolic fate of the cells depends on their metabolic trajectory encountering the region that allows such a metabolic state switch. Insights from such switch behavior present us with new means to control the metabolism of mammalian cells in fed-batch cultures.


Assuntos
Metabolismo Energético/fisiologia , Glucose/metabolismo , Glicólise/fisiologia , Ácido Láctico/metabolismo , Animais , Células CHO , Proliferação de Células , Células Cultivadas , Simulação por Computador , Cricetulus , Modelos Teóricos
12.
Biotechnol Bioeng ; 112(7): 1437-45, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25676211

RESUMO

Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells.


Assuntos
Produtos Biológicos/metabolismo , Biotecnologia/métodos , Técnicas de Cultura de Células/métodos , Tecnologia Farmacêutica/métodos , Animais , Contagem de Células , Linhagem Celular , Redes e Vias Metabólicas , Camundongos , Modelos Estatísticos , Proteínas Recombinantes/metabolismo
13.
PLoS One ; 9(6): e98756, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24911170

RESUMO

The flux of glycolysis is tightly controlled by feed-back and feed-forward allosteric regulations to maintain the body's glucose homeostasis and to respond to cell's growth and energetic needs. Using a mathematical model based on reported mechanisms for the allosteric regulations of the enzymes, we demonstrate that glycolysis exhibits multiple steady state behavior segregating glucose metabolism into high flux and low flux states. Two regulatory loops centering on phosphofructokinase and on pyruvate kinase each gives rise to the bistable behavior, and together impose more complex flux control. Steady state multiplicity endows glycolysis with a robust switch to transit between the two flux states. Under physiological glucose concentrations the glycolysis flux does not move between the states easily without an external stimulus such as hormonal, signaling or oncogenic cues. Distinct combination of isozymes in glycolysis gives different cell types the versatility in their response to different biosynthetic and energetic needs. Insights from the switch behavior of glycolysis may reveal new means of metabolic intervention in the treatment of cancer and other metabolic disorders through suppression of glycolysis.


Assuntos
Metabolismo Energético , Glicólise , Modelos Biológicos , Frutosefosfatos/metabolismo , Células HeLa , Humanos , Isoenzimas/metabolismo , Cinética , Fosfofrutoquinases/metabolismo , Piruvato Quinase/metabolismo
14.
Metab Eng ; 14(2): 138-49, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22244936

RESUMO

Fedbatch culture is the prevalent cell cultivation method in producing protein therapeutics. A metabolic shift to lactate consumption in late stage of cultivation has been shown to extend the culture viability and increase product concentrations. To better understand the factors, which trigger metabolic shift we performed transcriptome and metabolic flux analysis on a fedbatch culture of mouse myeloma cell line (NS0) and developed a mechanistic kinetic model for energy metabolism. Experimental observation indicates that the shift to lactate consumption occurs upon the cessation of rapid growth and under conditions of low glycolysis flux and high extracellular lactate concentrations. Although the transition is accompanied by a general down regulation of enzymes in energy metabolism, that alone was insufficient to elicit a metabolic shift. High lactate level has been reported to exert an inhibitory effect on glycolysis enzyme phosphofructokinase; model simulation suggests that a high lactate level can contribute to reduced glycolytic flux as well as providing a driving force for its conversion to pyruvate. The transcriptome data indicate that moderate alteration in the transcript levels of AKT1 and P53 signaling pathways genes occurs in the late stage of culture. These signaling pathways are known to regulate glycolytic activity. Model simulations further suggest that AKT1 signaling plays a key role in facilitating lactate consumption. Collectively, our results strongly suggest that lactate consumption in fedbatch culture is an outcome of reduced glycolysis flux, which is a product of lactate inhibition and regulatory action of signaling pathway caused by reduced growth rate.


Assuntos
Reatores Biológicos , Glicólise/efeitos dos fármacos , Ácido Láctico/farmacologia , Modelos Biológicos , Animais , Linhagem Celular Tumoral , Glicólise/fisiologia , Ácido Láctico/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ácido Pirúvico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
15.
Trends Biotechnol ; 28(9): 476-84, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20691487

RESUMO

Cultured mammalian cells are major vehicles for producing therapeutic proteins, and energy metabolism in those cells profoundly affects process productivity. The characteristic high glucose consumption and lactate production of industrial cell lines as well as their adverse effects on productivity have been the target of both cell line and process improvement for several decades. Recent research advances have shed new light on regulation of glucose metabolism and its links to cell proliferation. This review highlights our current understanding in this area of crucial importance in bioprocessing and further discusses strategies for harnessing new findings toward process enhancement through the manipulation of cellular energy metabolism.


Assuntos
Técnicas de Cultura de Células/métodos , Glucose/metabolismo , Biologia de Sistemas/métodos , Animais , Humanos , Redes e Vias Metabólicas , Transdução de Sinais
16.
Biotechnol Bioeng ; 105(5): 1002-9, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19882695

RESUMO

The high-throughput DNA sequencing Illumina Solexa GAII platform was employed to characterize the transcriptome of an antibody-producing Chinese hamster ovary (CHO) cell line. More than 55 million sequencing reads were generated and mapped to an existing set of CHO unigenes derived from expressed sequence tags (ESTs), as well as several public sequence databases. A very significant fraction of sequencing reads has not been previously seen. The frequency with which fragments of a unigene were sequenced was taken as an estimate of the abundance level of the corresponding transcripts. A wide dynamic range of transcript abundance levels was observed, spanning six orders of magnitude. However, the distribution of coverage across transcript lengths was found to vary, from relatively uniform to highly variable. This observation suggests that more challenges are yet to be resolved before direct sequencing can be used as a true quantitative measure of transcript level and for differential gene expression analysis. With the depth that high-throughput sequencing methods can reach, one can expect that the entire transcriptome of this industrially important organism will be decoded in the near future.


Assuntos
Perfilação da Expressão Gênica , RNA Mensageiro/genética , Animais , Anticorpos/genética , Anticorpos/metabolismo , Células CHO , Cricetinae , Cricetulus , Etiquetas de Sequências Expressas , Feminino , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Análise de Sequência de DNA/métodos
17.
Biotechnol Adv ; 27(6): 1028-1035, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19470403

RESUMO

Chinese hamster ovary (CHO) cells are widely used in recombinant protein production, yet despite their importance in bioprocessing, few genomic resources have been developed for this cell line. Over the past several years, we have made considerable progress in the development of genomic tools for CHO. Using Sanger-based sequencing technology, we have accrued a sequence repertoire of more than 68,000 expressed sequence tags (ESTs), representing more than 28,000 unique CHO transcripts. Using closely related species, we have functionally annotated this sequence set and have currently achieved significant representation in a number of functional classes, including some closely tied to recombinant protein production. This sequence repository has been used to design custom CHO Affymetrix arrays for transcriptome analysis. Illumina Solexa deep sequencing technology was also applied to study the CHO cell transcriptome and survey the identity and expression of small RNAs. These applications demonstrate the utility of genomic tools, and illustrate the applicability of emerging next-generation sequencing technologies.


Assuntos
Genômica , Animais , Células CHO , Cricetinae , Cricetulus , MicroRNAs/genética
18.
PLoS One ; 2(8): e713, 2007 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-17684559

RESUMO

N-glycosylation plays a key role in the quality of many therapeutic glycoprotein biologics. The biosynthesis reactions of these oligosaccharides are a type of network in which a relatively small number of enzymes give rise to a large number of N-glycans as the reaction intermediates and terminal products. Multiple glycans appear on the glycoprotein molecules and give rise to a heterogeneous product. Controlling the glycan distribution is critical to the quality control of the product. Understanding N-glycan biosynthesis and the etiology of microheterogeneity would provide physiological insights, and facilitate cellular engineering to enhance glycoprotein quality. We developed a mathematical model of glycan biosynthesis in the Golgi and analyzed the various reaction variables on the resulting glycan distribution. The Golgi model was modeled as four compartments in series. The mechanism of protein transport across the Golgi is still controversial. From the viewpoint of their holding time distribution characteristics, the two main hypothesized mechanisms, vesicular transport and Golgi maturation models, resemble four continuous mixing-tanks (4CSTR) and four plug-flow reactors (4PFR) in series, respectively. The two hypotheses were modeled accordingly and compared. The intrinsic reaction kinetics were first evaluated using a batch (or single PFR) reactor. A sufficient holding time is needed to produce terminally-processed glycans. Altering enzyme concentrations has a complex effect on the final glycan distribution, as the changes often affect many reaction steps in the network. Comparison of the glycan profiles predicted by the 4CSTR and 4PFR models points to the 4PFR system as more likely to be the true mechanism. To assess whether glycan heterogeneity can be eliminated in the biosynthesis of biotherapeutics the 4PFR model was further used to assess whether a homogeneous glycan profile can be created through metabolic engineering. We demonstrate by the spatial localization of enzymes to specific compartments all terminally processed N-glycans can be synthesized as homogeneous products with a sufficient holding time in the Golgi compartments. The model developed may serve as a guide to future engineering of glycoproteins.


Assuntos
Glicoproteínas/metabolismo , Modelos Teóricos , Polissacarídeos/metabolismo , Animais , Configuração de Carboidratos , Sequência de Carboidratos , Glicoproteínas/química , Glicosídeo Hidrolases/metabolismo , Glicosilação , Complexo de Golgi/metabolismo , Dados de Sequência Molecular , Polissacarídeos/química , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA