Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Oncol Biol Phys ; 118(2): 554-564, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619789

RESUMO

PURPOSE: Our purpose was to analyze the effect on gastrointestinal (GI) toxicity models when their dose-volume metrics predictors are derived from segmentations of the peritoneal cavity after different contouring approaches. METHODS AND MATERIALS: A random forest machine learning approach was used to predict acute grade ≥3 GI toxicity from dose-volume metrics and clinicopathologic factors for 246 patients (toxicity incidence = 9.5%) treated with definitive chemoradiation for squamous cell carcinoma of the anus. Three types of random forest models were constructed based on different bowel bag segmentation approaches: (1) physician-delineated after Radiation Therapy Oncology Group (RTOG) guidelines, (2) autosegmented by a deep learning model (nnU-Net) following RTOG guidelines, and (3) autosegmented but spanning the entire bowel space. Each model type was evaluated using repeated cross-validation (100 iterations; 50%/50% training/test split). The performance of the models was assessed using area under the precision-recall curve (AUPRC) and the receiver operating characteristic curve (AUROCC), as well as optimal F1 score. RESULTS: When following RTOG guidelines, the models based on the nnU-Net auto segmentations (mean values: AUROCC, 0.71 ± 0.07; AUPRC, 0.42 ± 0.09; F1 score, 0.46 ± 0.08) significantly outperformed (P < .001) those based on the physician-delineated contours (mean values: AUROCC, 0.67 ± 0.07; AUPRC, 0.34 ± 0.08; F1 score, 0.36 ± 0.07). When spanning the entire bowel space, the performance of the autosegmentation models improved considerably (mean values: AUROCC, 0.87 ± 0.05; AUPRC, 0.70 ± 0.09; F1 score, 0.68 ± 0.09). CONCLUSIONS: Random forest models were superior at predicting acute grade ≥3 GI toxicity when based on RTOG-defined bowel bag autosegmentations rather than physician-delineated contours. Models based on autosegmentations spanning the entire bowel space show further considerable improvement in model performance. The results of this study should be further validated using an external data set.


Assuntos
Neoplasias do Ânus , Gastroenteropatias , Humanos , Algoritmo Florestas Aleatórias , Cavidade Peritoneal , Neoplasias do Ânus/radioterapia , Quimiorradioterapia/efeitos adversos , Gastroenteropatias/etiologia
2.
Radiother Oncol ; 191: 110061, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38122850

RESUMO

PURPOSE: Accurate and comprehensive segmentation of cardiac substructures is crucial for minimizing the risk of radiation-induced heart disease in lung cancer radiotherapy. We sought to develop and validate deep learning-based auto-segmentation models for cardiac substructures. MATERIALS AND METHODS: Nineteen cardiac substructures (whole heart, 4 heart chambers, 6 great vessels, 4 valves, and 4 coronary arteries) in 100 patients treated for non-small cell lung cancer were manually delineated by two radiation oncologists. The valves and coronary arteries were delineated as planning risk volumes. An nnU-Net auto-segmentation model was trained, validated, and tested on this dataset with a split ratio of 75:5:20. The auto-segmented contours were evaluated by comparing them with manually drawn contours in terms of Dice similarity coefficient (DSC) and dose metrics extracted from clinical plans. An independent dataset of 42 patients was used for subjective evaluation of the auto-segmentation model by 4 physicians. RESULTS: The average DSCs were 0.95 (+/- 0.01) for the whole heart, 0.91 (+/- 0.02) for 4 chambers, 0.86 (+/- 0.09) for 6 great vessels, 0.81 (+/- 0.09) for 4 valves, and 0.60 (+/- 0.14) for 4 coronary arteries. The average absolute errors in mean/max doses to all substructures were 1.04 (+/- 1.99) Gy and 2.20 (+/- 4.37) Gy. The subjective evaluation revealed that 94% of the auto-segmented contours were clinically acceptable. CONCLUSION: We demonstrated the effectiveness of our nnU-Net model for delineating cardiac substructures, including coronary arteries. Our results indicate that this model has promise for studies regarding radiation dose to cardiac substructures.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Coração/diagnóstico por imagem , Órgãos em Risco
3.
J Imaging ; 9(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37998092

RESUMO

In this study, we aimed to enhance the contouring accuracy of cardiac pacemakers by improving their visualization using deep learning models to predict MV CBCT images based on kV CT or CBCT images. Ten pacemakers and four thorax phantoms were included, creating a total of 35 combinations. Each combination was imaged on a Varian Halcyon (kV/MV CBCT images) and Siemens SOMATOM CT scanner (kV CT images). Two generative adversarial network (GAN)-based models, cycleGAN and conditional GAN (cGAN), were trained to generate synthetic MV (sMV) CBCT images from kV CT/CBCT images using twenty-eight datasets (80%). The pacemakers in the sMV CBCT images and original MV CBCT images were manually delineated and reviewed by three users. The Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and mean surface distance (MSD) were used to compare contour accuracy. Visual inspection showed the improved visualization of pacemakers on sMV CBCT images compared to original kV CT/CBCT images. Moreover, cGAN demonstrated superior performance in enhancing pacemaker visualization compared to cycleGAN. The mean DSC, HD95, and MSD for contours on sMV CBCT images generated from kV CT/CBCT images were 0.91 ± 0.02/0.92 ± 0.01, 1.38 ± 0.31 mm/1.18 ± 0.20 mm, and 0.42 ± 0.07 mm/0.36 ± 0.06 mm using the cGAN model. Deep learning-based methods, specifically cycleGAN and cGAN, can effectively enhance the visualization of pacemakers in thorax kV CT/CBCT images, therefore improving the contouring precision of these devices.

4.
Front Oncol ; 13: 1204323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771435

RESUMO

Purpose: Variability in contouring structures of interest for radiotherapy continues to be challenging. Although training can reduce such variability, having radiation oncologists provide feedback can be impractical. We developed a contour training tool to provide real-time feedback to trainees, thereby reducing variability in contouring. Methods: We developed a novel metric termed localized signed square distance (LSSD) to provide feedback to the trainee on how their contour compares with a reference contour, which is generated real-time by combining trainee contour and multiple expert radiation oncologist contours. Nine trainees performed contour training by using six randomly assigned training cases that included one test case of the heart and left ventricle (LV). The test case was repeated 30 days later to assess retention. The distribution of LSSD maps of the initial contour for the training cases was combined and compared with the distribution of LSSD maps of the final contours for all training cases. The difference in standard deviations from the initial to final LSSD maps, ΔLSSD, was computed both on a per-case basis and for the entire group. Results: For every training case, statistically significant ΔLSSD were observed for both the heart and LV. When all initial and final LSSD maps were aggregated for the training cases, before training, the mean LSSD ([range], standard deviation) was -0.8 mm ([-37.9, 34.9], 4.2) and 0.3 mm ([-25.1, 32.7], 4.8) for heart and LV, respectively. These were reduced to -0.1 mm ([-16.2, 7.3], 0.8) and 0.1 mm ([-6.6, 8.3], 0.7) for the final LSSD maps during the contour training sessions. For the retention case, the initial and final LSSD maps of the retention case were aggregated and were -1.5 mm ([-22.9, 19.9], 3.4) and -0.2 mm ([-4.5, 1.5], 0.7) for the heart and 1.8 mm ([-16.7, 34.5], 5.1) and 0.2 mm ([-3.9, 1.6],0.7) for the LV. Conclusions: A tool that uses real-time contouring feedback was developed and successfully used for contour training of nine trainees. In all cases, the utility was able to guide the trainee and ultimately reduce the variability of the trainee's contouring.

5.
Sci Rep ; 12(1): 19093, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351987

RESUMO

Manually delineating upper abdominal organs at risk (OARs) is a time-consuming task. To develop a deep-learning-based tool for accurate and robust auto-segmentation of these OARs, forty pancreatic cancer patients with contrast-enhanced breath-hold computed tomographic (CT) images were selected. We trained a three-dimensional (3D) U-Net ensemble that automatically segments all organ contours concurrently with the self-configuring nnU-Net framework. Our tool's performance was assessed on a held-out test set of 30 patients quantitatively. Five radiation oncologists from three different institutions assessed the performance of the tool using a 5-point Likert scale on an additional 75 randomly selected test patients. The mean (± std. dev.) Dice similarity coefficient values between the automatic segmentation and the ground truth on contrast-enhanced CT images were 0.80 ± 0.08, 0.89 ± 0.05, 0.90 ± 0.06, 0.92 ± 0.03, 0.96 ± 0.01, 0.97 ± 0.01, 0.96 ± 0.01, and 0.96 ± 0.01 for the duodenum, small bowel, large bowel, stomach, liver, spleen, right kidney, and left kidney, respectively. 89.3% (contrast-enhanced) and 85.3% (non-contrast-enhanced) of duodenum contours were scored as a 3 or above, which required only minor edits. More than 90% of the other organs' contours were scored as a 3 or above. Our tool achieved a high level of clinical acceptability with a small training dataset and provides accurate contours for treatment planning.


Assuntos
Órgãos em Risco , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Abdome/diagnóstico por imagem , Fígado , Planejamento de Assistência ao Paciente , Processamento de Imagem Assistida por Computador/métodos
6.
Med Image Anal ; 73: 102166, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34340104

RESUMO

Vertebral labelling and segmentation are two fundamental tasks in an automated spine processing pipeline. Reliable and accurate processing of spine images is expected to benefit clinical decision support systems for diagnosis, surgery planning, and population-based analysis of spine and bone health. However, designing automated algorithms for spine processing is challenging predominantly due to considerable variations in anatomy and acquisition protocols and due to a severe shortage of publicly available data. Addressing these limitations, the Large Scale Vertebrae Segmentation Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020, with a call for algorithms tackling the labelling and segmentation of vertebrae. Two datasets containing a total of 374 multi-detector CT scans from 355 patients were prepared and 4505 vertebrae have individually been annotated at voxel level by a human-machine hybrid algorithm (https://osf.io/nqjyw/, https://osf.io/t98fz/). A total of 25 algorithms were benchmarked on these datasets. In this work, we present the results of this evaluation and further investigate the performance variation at the vertebra level, scan level, and different fields of view. We also evaluate the generalisability of the approaches to an implicit domain shift in data by evaluating the top-performing algorithms of one challenge iteration on data from the other iteration. The principal takeaway from VerSe: the performance of an algorithm in labelling and segmenting a spine scan hinges on its ability to correctly identify vertebrae in cases of rare anatomical variations. The VerSe content and code can be accessed at: https://github.com/anjany/verse.


Assuntos
Benchmarking , Tomografia Computadorizada por Raios X , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador , Coluna Vertebral/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA