Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791956

RESUMO

The overexpression of somatostatin receptor type 2 (SSTR2) is a property of various tumor types. Hybrid imaging utilizing [68Ga]1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra-acetic acid (DOTA) may improve the differentiation between tumor and healthy tissue. We conducted an experimental study on 47 anonymized patient cases including 30 meningiomas, 12 PitNET and 5 SBPGL. Four independent observers were instructed to contour the macroscopic tumor volume on planning MRI and then reassess their volumes with the additional information from DOTA-PET/CT. The conformity between observers and reference volumes was assessed. In total, 46 cases (97.9%) were DOTA-avid and included in the final analysis. In eight cases, PET/CT additional tumor volume was identified that was not detected by MRI; these PET/CT findings were potentially critical for the treatment plan in four cases. For meningiomas, the interobserver and observer to reference volume conformity indices were higher with PET/CT. For PitNET, the volumes had higher conformity between observers with MRI. With regard to SBGDL, no significant trend towards conformity with the addition of PET/CT information was observed. DOTA PET/CT supports accurate tumor recognition in meningioma and PitNET and is recommended in SSTR2-expressing tumors planned for treatment with highly conformal radiation.

2.
J Appl Clin Med Phys ; : e14321, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436509

RESUMO

PURPOSE: Carbon ion radiotherapy (CIRT) relies on relative biological effectiveness (RBE)-weighted dose calculations. Japanese clinics predominantly use the microdosimetric kinetic model (MKM), while European centers utilize the local effect model (LEM). Despite both models estimating RBE-distributions in tissue, their physical and mathematical assumptions differ, leading to significant disparities in RBE-weighted doses. Several European clinics adopted Japanese treatment schedules, necessitating adjustments in dose prescriptions and organ at risk (OAR) constraints. In the context of these two clinically used standards for RBE-weighted dose estimation, the objective of this study was to highlight specific scenarios for which the translations between models diverge, as shortcomings between them can influence clinical decisions. METHODS: Our aim was to discuss planning strategies minimizing those discrepancies, ultimately striving for more accurate and robust treatments. Evaluations were conducted in a virtual water phantom and patient CT-geometry, optimizing LEM RBE-weighted dose first and recomputing MKM thereafter. Dose-averaged linear energy transfer (LETd) distributions were also assessed. RESULTS: Results demonstrate how various parameters influence LEM/MKM translation. Similar LEM-dose distributions lead to markedly different MKM-dose distributions and variations in LETd. Generally, a homogeneous LEM RBE-weighted dose aligns with lower MKM values in most of the target volume. Nevertheless, paradoxical MKM hotspots may emerge (at the end of the range), potentially influencing clinical outcomes. Therefore, translation between models requires great caution. CONCLUSIONS: Understanding the relationship between these two clinical standards enables combining European and Japanese based experiences. The implementation of optimal planning strategies ensures the safety and acceptability of the clinical plan for both models and therefore enhances plan robustness from the RBE-weighted dose and LETd distribution point of view. This study emphasizes the importance of optimal planning strategies and the need for comprehensive CIRT plan quality assessment tools. In situations where simultaneous LEM and MKM computation capabilities are lacking, it can provide guidance in plan design, ultimately contributing to enhanced CIRT outcomes.

3.
Cancers (Basel) ; 13(18)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34572933

RESUMO

Grade I meningioma is the most common intracranial tumor in adults. The standard imaging for its radiation treatment planning is MRI, and [68Ga]1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated PET/CT can further improve delineation. We investigated the impact of PET/CT on interobserver variability in identifying the tumor in 30 anonymized patients. Four radiation oncologists independently contoured residual tumor volume, first using only MRI and subsequently with the addition of PET/CT. Conformity indices (CIs) were calculated between common volumes, observer pairs and compared to the volumes previously used. Overall, 29/30 tumors (96.6%) showed [68Ga]Ga-DOTA avidity. With help of PET/CT, the participants identified six cases with new lesions not recognized in MRI, including two where new findings would critically alter the target volume used for radiation. The PET/CT-aided series demonstrated superior conformity, as compared to MRI-only between observer pairs (median CI = 0.58 vs. 0.49; p = 0.002), common volumes (CI = 0.34; vs. 0.29; p = 0.002) and matched better the reference volumes actually used for patient treatment (CI = 0.55 vs. 0.39; p = 0.008). Cis in the PET/CT-aided series were lower for meningiomas outside of the skull base (0.2 vs. 0.44; p = 0.03). We conclude that SSTR2 receptor-targeted PET/CT is a valuable tool for planning particle therapy of incompletely resected meningioma. It serves both as a workup procedure and an aid for delineation process that reduces the likelihood of marginal misses.

4.
Z Med Phys ; 28(3): 196-210, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29107440

RESUMO

The ratio of patients who need a treatment adaptation due to anatomical variations at least once during the treatment course is significantly higher in light ion beam therapy (LIBT) than in photon therapy. The ballistic behaviour of ion beams makes them more sensitive to changes. Hence, the delivery of LIBT has always been supported by state of art image guidance. On the contrary CBCT technology was adapted for LIBT quite late. Adaptive concepts are being implemented more frequently in photon therapy and also efficient workflows are needed for LIBT. The MedAustron Ion Beam Therapy Centre was designed to allow the clinical implementation of adaptive image-guided concepts. The aim of this paper is to describe the current status and the potential future use of the technology installed at MedAustron. Specifically addressed is the beam delivery system, the patient alignment system, the treatment planning system as well as the Record & Verify system. Finally, an outlook is given on how high quality X-ray imaging, MR image guidance, fast and automated treatment planning as well as in vivo range verification methods could be integrated.


Assuntos
Neoplasias/radioterapia , Radioterapia/instrumentação , Radioterapia/métodos , Institutos de Câncer/organização & administração , Institutos de Câncer/normas , Institutos de Câncer/tendências , Humanos , Neoplasias/diagnóstico por imagem , Radioterapia/normas , Radioterapia/tendências , Planejamento da Radioterapia Assistida por Computador/tendências
5.
Phys Med ; 25(3): 105-10, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18694653

RESUMO

We wanted to verify the response of radiochromic films in a 175MeV clinical proton beam used at the Joint Institute for Nuclear Research in Dubna against doses measured using semiconductor detectors and compare the results with published data from other centres. Radiochromic films (RCFs) MD-55 and a Vidar VXR-16 scanner were used. The films were irradiated in an unmodulated proton beam and with a beam modulated with a bolus and a ridge filter. Obtained dose distributions were compared with dose distributions measured with a Si-semiconductor detector. For the unmodulated beam the difference between the RCF and the semiconductor detector was 12% in the Bragg peak top. For the modulated beam the difference inside the spread-out Bragg peak region was 4%. Observed deviations between doses measured with RCF and Si-detector outside the Bragg peak were caused by the inhomogeneity of radiochromic emulsion. In the Bragg peak region the RCF doses were lower than those measured by semiconductors. The results were in agreement with published data from other proton therapy centres.


Assuntos
Dosimetria Fotográfica/instrumentação , Terapia com Prótons , Semicondutores , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA