Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Food Chem X ; 22: 101418, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38736980

RESUMO

Purpose of current study was to determine physicochemical, triglyceride composition, and functional groups of wild adlay accessions (brown, black, yellow, grey, green, off white, and purple) to find out its scope as cereal crop. Triglycerides, minerals and functional groups were determined through Gas chromatography, spectrophotometer and Fourier Transform Infrared (FTIR) spectrophotometer respectively. Results revealed variation among bulk densities, specific densities, percent empty spaces, and corresponding grain counts per 10 g of sample are useful in distinguishing brown, black, yellow, grey, green, off white, and purple wild adlay accessions. Specific density and grain count per 10 g sample was significantly related. No statistical relationship exists among the pronounced physical characteristics. Brown adlay expressed the highest protein, fat, and fiber contents 15.82%, 4.76% and 2.37% respectively. Protein, fat, ash, and fiber percent contents were found comparable to cultivated adlay. Spectrophotometric analysis revealed macro elements including phosphorus, potassium, calcium, and sodium in the range 0.3% - 2.2% and micro elements boron, iron, copper, zinc, and manganese in the range 1.6 mg/kg - 20.8 mg/kg. Gas chromatography showed polyunsaturated fatty acids (PUFA) constitute the primary fraction (39% ± 7.2) of wild adlay triglycerides. Linoleic and palmitic acids were present as prominent fatty acids, 43.5% ±1.4 and 26.3% ±1.4 respectively. Infra-red frequencies distinguished functional groups in narrow band and fingerprint region of protein in association with out of plane region leading to structural differences among adlay accessions. Comparison of major distinguishing vibrational frequencies among different flours indicated black adlay containing highest functional groups appeared promising for varietal development.

2.
3 Biotech ; 14(3): 60, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38318162

RESUMO

Probiotics represent beneficial living microorganisms that confer physiological, nutritional, and functional advantages to human health, holding significant potential for development of functional foods. This research aimed to isolate, identify, and characterize potential probiotic bacterial strains sourced from fermented and non-fermented foods from Pakistan. A total of 341 bacterial strains were isolated from diverse food samples (81) collected from various regions of Pakistan. Strains were identified using 16S rRNA gene sequencing and phylogenetic analysis. The identified strains belonged to genera Bacillus, Staphylococcus, Microbacterium, Shigella, Micrococcus, Enterococcus, Sporosarcina, Paenibacillus, Limosilactobacillus, Kosakonia, Dietzia, Leclercia, Lacticaseibacillus, Levilactobacillus, Kluyvera, Providencia, Enterobacter, Neisseria, Streptococcus, Acinetobacter, Corynebacterium, Pantoea, Mammaliicoccus, Pseudomonas, Burkholderia, and Alkalihalobacillus. Selected strains were chosen for probiotic assessment, employing existing literature as a guideline. Among these selections, six strains exhibited hemolytic activity, and seven strains displayed resistance to multiple antibiotics, prompting their exclusion from subsequent evaluations. The remaining strains demonstrated auto-aggregation capacities spanning 3.39-79.7%, and displayed coaggregation capabilities with reported food-borne pathogens. Furthermore, nine strains exhibited antimicrobial properties against food-borne pathogens. The assessment encompassed diverse characteristics such as cell surface hydrophobicity, survival rates under varying conditions, cholesterol reduction ability, casein digestion capability, and antioxidant activity. Phylogenomic analysis, digital-DNA DNA hybridization (digi-DDH), and average nucleotide identity (ANI) calculations unveiled novel species potentially belonging to the genera Sporosarcina and Dietzia. Based on these findings, we advocate for the consideration of Staphylococcus cohnii subsp. cohnii NCCP-2414, Lacticaseibacillus rhamnosus NCCP-2569 and Levilactobacillus brevis NCCP-2574 as prime probiotic candidates with the potential for integration into formulation of functional foods. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03903-6.

3.
Front Plant Sci ; 14: 1140454, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251763

RESUMO

Zinc (Zn) is an indispensable element for proper plant growth. A sizeable proportion of the inorganic Zn that is added to soil undergoes a transformation into an insoluble form. Zinc-solubilizing bacteria (ZSB) have the potential to transform the insoluble Zn into plant-accessible forms and are thus promising alternatives for Zn supplementation. The current research was aimed at investigating the Zn solubilization potential of indigenous bacterial strains and to evaluate their impact on wheat growth and Zn biofortification. A number of experiments were conducted at the National Agriculture Research Center (NARC), Islamabad, during 2020-21. A total of 69 strains were assessed for their Zn-solubilizing ability against two insoluble Zn sources (ZnO and ZnCO3) using plate assay techniques. During the qualitative assay, the solubilization index and solubilization efficiency were measured. The qualitatively selected Zn-solubilizing bacterial strains were further tested quantitatively using broth culture for Zn and phosphorus (P) solubility. Tricalcium phosphate was used as insoluble source of P. The results showed that broth culture pH was negatively correlated with Zn solubilization, i.e., ZnO (r2 = 0.88) and ZnCO3 (r2 = 0.96). Ten novel promising strains, i.e., Pantoea sp. NCCP-525, Klebsiella sp. NCCP-607, Brevibacterium sp. NCCP-622, Klebsiella sp. NCCP-623, Acinetobacter sp. NCCP-644, Alcaligenes sp. NCCP-650, Citrobacter sp. NCCP-668, Exiguobacterium sp. NCCP-673, Raoultella sp. NCCP-675, and Acinetobacter sp. NCCP-680, were selected from the ecology of Pakistan for further experimentation on wheat crop based on plant growth-promoting rhizobacteria (PGPR) traits, i.e., solubilization of Zn and P in addition to being positive for nifH and acdS genes. Before evaluating the bacterial strains for plant growth potential, a control experiment was also conducted to determine the highest critical Zn level from ZnO to wheat growth using different Zn levels (0.1, 0.05, 0.01, 0.005, and 0.001% Zn) against two wheat varieties (Wadaan-17 and Zincol-16) in sand culture under glasshouse conditions. Zinc-free Hoagland nutrients solution was used to irrigate the wheat plants. As a result, 50 mg kg-1 of Zn from ZnO was identified as the highest critical level for wheat growth. Using the critical level (50 mg kg-1 of Zn), the selected ZSB strains were inoculated alone and in consortium to the seed of wheat, with and without the use of ZnO, in sterilized sand culture. The ZSB inoculation in consortium without ZnO resulted in improved shoot length (14%), shoot fresh weight (34%), and shoot dry weight (37%); with ZnO root length (116%), it saw root fresh weight (435%), root dry weight (435%), and Zn content in the shoot (1177%) as compared to the control. Wadaan-17 performed better on growth attributes, while Zincol-16 had 5% more shoot Zn concentration. The present study concluded that the selected bacterial strains show the potential to act as ZSB and are highly efficient bio-inoculants to combat Zn deficiency, and the inoculation of these strains in consortium performed better in terms of growth and Zn solubility for wheat as compared to individual inoculation. The study further concluded that 50 mg kg-1 Zn from ZnO had no negative impact on wheat growth; however, higher concentrations hampered wheat growth.

4.
J Food Drug Anal ; 25(3): 488-500, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28911634

RESUMO

An investigation was carried out to extract polyphenols from the peel of kinnow (Citrus reticulate L.) by maceration and ultrasound-assisted extraction (UAE) techniques. The antioxidant potential of these polyphenols was evaluated using ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and superoxide radical scavenging assays; and their antimicrobial activity was assessed against bacterial strains Staphyloccoccus aureus, Bacillus cereus, and Salmonella typhimurium. The highest extraction yield was obtained through the solvent ethanol at 80% concentration level, whereas UAE was a more efficient technique and yielded comparatively higher polyphenol contents than maceration. Maximum polyphenols were extracted with 80% methanol [32.48 mg gallic acid equivalent (GAE)/g extract] using UAE, whereas minimum phenolics (8.64 mg GAE/g extract) were obtained with 80% ethyl acetate through the maceration technique. Elevated antioxidant activity of kinnow peel extracts was exhibited in three antioxidant assays, where 80% methanolic extracts showed the highest antioxidant activity (27.67±1.11mM/100 g for FRAP) and the highest scavenging activity, 72.83±0.65% and 64.80±0.91% for DPPH and superoxide anion radical assays, respectively. Strong correlations between total polyphenols and antioxidant activity were recorded. Eleven phenolic compounds-including five phenolic acids and six flavonoids-were identified and quantified by high performance liquid chromatography. Ferulic acid and hesperidin were the most abundant compounds whereas caffeic acid was the least abundant phenolic compound in kinnow peel extracts. Maximum inhibition zone was recorded against S. aureus (16.00±0.58 mm) whereas minimum inhibition zone was noted against S. typhimurium (9.00±1.16 mm). It was concluded that kinnow mandarin peels, being a potential source of phenolic compounds with antioxidant and antimicrobial properties, may be used as an ingredient for the preparation of functional foods.


Assuntos
Citrus , Antioxidantes , Compostos de Bifenilo , Cromatografia Líquida de Alta Pressão , Flavonoides , Oxirredução , Picratos , Extratos Vegetais , Polifenóis , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA