Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Front Microbiol ; 13: 1008870, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532495

RESUMO

Aeromonas species are Gram-negative bacteria that infect various living organisms and are ubiquitously found in different aquatic environments. In this study, we used whole genome sequencing (WGS) to identify and compare the antimicrobial resistance (AMR) genes, integrons, transposases and plasmids found in Aeromonas hydrophila, Aeromonas caviae and Aeromonas veronii isolated from Indian major carp (Catla catla), Indian carp (Labeo rohita), catfish (Clarias batrachus) and Nile tilapia (Oreochromis niloticus) sampled in India. To gain a wider comparison, we included 11 whole genome sequences of Aeromonas spp. from different host species in India deposited in the National Center for Biotechnology Information (NCBI). Our findings show that all 15 Aeromonas sequences examined had multiple AMR genes of which the Ambler classes B, C and D ß-lactamase genes were the most dominant. The high similarity of AMR genes in the Aeromonas sequences obtained from different host species point to interspecies transmission of AMR genes. Our findings also show that all Aeromonas sequences examined encoded several multidrug efflux-pump proteins. As for genes linked to mobile genetic elements (MBE), only the class I integrase was detected from two fish isolates, while all transposases detected belonged to the insertion sequence (IS) family. Only seven of the 15 Aeromonas sequences examined had plasmids and none of the plasmids encoded AMR genes. In summary, our findings show that Aeromonas spp. isolated from different host species in India carry multiple AMR genes. Thus, we advocate that the control of AMR caused by Aeromonas spp. in India should be based on a One Health approach.

2.
Int J Mol Sci ; 23(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35269976

RESUMO

Bacteriocins are emerging as a viable alternative to antibiotics due to their ability to inhibit growth or kill antibiotic resistant pathogens. Herein, we evaluated the ability of the bacteriocin Garvicin KS (GarKS) produced by Lactococcus garvieae KS1546 isolated from cow milk to inhibit the growth of fish and foodborne bacterial pathogens. We found that GarKS inhibited the growth of five fish L. garvieae strains isolated from infected trout and eels. Among fish pathogens, GarKS inhibited the growth of Streptococcus agalactiae serotypes Ia and Ib, and Aeromonas hydrophila but did not inhibit the growth of Edwardsiella tarda. In addition, it inhibited the growth of A. salmonicida strain 6421 but not A. salmonicida strain 6422 and Yersinia ruckeri. There was no inhibition of three foodborne bacterial species, namely Salmonella enterica, Klebsiella pneumoniae, and Escherichia coli. In vitro cytotoxicity tests using different GarKS concentrations showed that the highest concentration of 33 µg/mL exhibited low cytotoxicity, while concentrations ≤3.3 µg/mL had no cytotoxicity on CHSE-214 and RTG-2 cells. In vivo tests showed that zebrafish larvae treated with 33 µg/mL and 3.3 µg/mL GarKS prior to challenge had 53% and 48% survival, respectively, while concentrations ≤0.33 µg/mL were nonprotective. Altogether, these data show that GarKS has a broad inhibitory spectrum against Gram positive and negative bacteria and that it has potential applications as a therapeutic agent for a wide range of bacterial pathogens. Thus, future studies should include clinical trials to test the efficacy of GarKS against various bacterial pathogens in farmed fish.


Assuntos
Bacteriocinas , Doenças dos Peixes , Yersiniose , Animais , Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Bovinos , Feminino , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Lactococcus , Larva , Peixe-Zebra
3.
Transbound Emerg Dis ; 69(3): 1659-1662, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33900037

RESUMO

Mycobacterium bovis (M. bovis) causes tuberculosis in mammals and is a major public health threat worldwide. While M. bovis has been reported in humans, domestic and wild ruminants at the human-wildlife-livestock interface area in Zambia, there is paucity of information on the role of primates as reservoir hosts. We screened seven wild chacma baboons (Papio ursinus) for tuberculosis at the human-wildlife interface area in Lochinvar National Park in the Kafue Flats, Zambia. Following necropsy, lung tissue and associated lymph nodes with tuberculous-like lesions collected from four adult male baboons were prepared for Mycobacterium culture. The isolates were initially typed using the Mycobacterium tuberculosis complex-discrimination multiplex PCR assay and further characterized by spoligotyping and 26-loci MIRU-VNTR. Mycobacteria were isolated from all four animals and identified as M. bovis by PCR. On Spoligotyping, all isolates belonged to SB 0120 spoligotype, which is similar to what was previously reported in humans, cattle and Kafue lechwe antelopes in Kafue Flats ecosystem. Furthermore, on MIRU-VNTR typing, the baboon isolates clustered with cattle and Kafue lechwe isolates from the same catchment area. This finding intimates probable cross-species transmission of M. bovis in the Kafue Flats ecosystem. Due to the close interaction of baboons and humans at interface areas in Zambia, our results have potential implications for public health. Equally, this finding raises concerns for conservation.


Assuntos
Antílopes , Doenças dos Bovinos , Mycobacterium bovis , Tuberculose Bovina , Tuberculose , Animais , Animais Selvagens/microbiologia , Bovinos , Ecossistema , Humanos , Masculino , Repetições Minissatélites , Papio ursinus , Tuberculose/epidemiologia , Tuberculose/microbiologia , Tuberculose/veterinária , Tuberculose Bovina/microbiologia , Zâmbia/epidemiologia
4.
BMC Res Notes ; 14(1): 313, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34399833

RESUMO

OBJECTIVES: Aeromonads cause severe diseases in farmed aquatic organisms. Herein, we examined 28 isolates causing disease in farmed aquatic organisms from India (n = 24) and Taiwan (n = 4) to gain insight of their genotypic and phenotypic properties. RESULTS: API 20NE biochemical phenotyping showed ≥ 90% similarity classifying all isolates as Aeromonas hydrophila. 16S rRNA genotyping showed ≥ 98% homology among all isolates with A. sobria (NR119044.1ATCC), A. veronii (MK990549.1), A. caviae (NR029252.1) and A. hydrophila (MG984625.1ATCC) and other reference strains. In contrast, gyrB showed a higher intraspecies diversity (≥ 96%) than 16S rRNA delineating the 28 isolates into three groups. Group-I consisted of seven Indian isolates clustered with A. sobria (MK484163.1ATCC), group-II comprised of five Indian and two Taiwanese isolates clustered with A. veronii AF417626.1ATCC while group-III had 11 Indian and three Taiwanese isolates grouped with A. hydrophila (AY987520.1 and DQ519366.1) reference strains. None of our isolates clustered with A. caviae (AJ868400.1ATCC) reference strain. These findings suggest that A. sobria, A. veronii and A. hydrophila could be the etiological agents of diseases observed in farmed fish and soft-shelled turtles (Pelodiscus sinensis) examined in this study. Overall, our findings accentuate the importance of combining phenotyping with genotyping for correct taxonomic classification of Aeromonas spp. in Aquaculture.


Assuntos
Aeromonas , Aeromonas/genética , Aeromonas hydrophila/genética , Animais , Índia , RNA Ribossômico 16S/genética , Taiwan
5.
J Aquat Anim Health ; 33(3): 162-177, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34121243

RESUMO

Tilapia culture is a very promising industry within the aquaculture sector. However, disease outbreaks have continued to threaten the industry, causing serious economic losses among the producers. Streptococcosis has become the major bacterial disease affecting tilapia production in most regions of the world. To combat the disease and minimize its economic impact on fish producers, numerous preventive and control measures have been developed and reported over the years. This paper aims to systematically review the measures that could be used to manage the disease outbreaks and maintain fish health based on previously published scientific studies. Although numerous measures currently available have been highlighted, it is far better for the producers to maximize the preventive measures for management to be economically feasible. Among the currently available preventive measures, the use of vaccines has been shown to have the most promise, while the use of herbs has been demonstrated to be a more sustainable and economically affordable control measure. However, there are still a number of important gaps in existing literature that require further investigation. Overall, significant progress has been made in preventing and controlling streptococcosis in tilapia although, no single effective measure has been identified. Therefore, a combination of these measures may provide a more effective result.


Assuntos
Doenças dos Peixes , Infecções Estreptocócicas , Tilápia , Animais , Aquicultura , Doenças dos Peixes/prevenção & controle , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária
6.
Pathogens ; 10(6)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070735

RESUMO

Aquaculture is the fastest food-producing sector in the world, accounting for one-third of global food production. As is the case with all intensive farming systems, increase in infectious diseases has adversely impacted the growth of marine fish farming worldwide. Viral diseases cause high economic losses in marine aquaculture. We provide an overview of the major challenges limiting the control and prevention of viral diseases in marine fish farming, as well as highlight potential solutions. The major challenges include increase in the number of emerging viral diseases, wild reservoirs, migratory species, anthropogenic activities, limitations in diagnostic tools and expertise, transportation of virus contaminated ballast water, and international trade. The proposed solutions to these problems include developing biosecurity policies at global and national levels, implementation of biosecurity measures, vaccine development, use of antiviral drugs and probiotics to combat viral infections, selective breeding of disease-resistant fish, use of improved diagnostic tools, disease surveillance, as well as promoting the use of good husbandry and management practices. A multifaceted approach combining several control strategies would provide more effective long-lasting solutions to reduction in viral infections in marine aquaculture than using a single disease control approach like vaccination alone.

7.
Viruses ; 13(1)2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375689

RESUMO

Viral hemorrhagic septicemia virus (VHSV) is a highly pathogenic virus that infects a wide range of host fish species causing high economic losses in aquaculture. Epithelial cells in mucosal organs are target sites for VHSV entry into fish. To protect fish against VHSV infection, there is a need to develop antiviral compounds able to prevent establishment of infection at portals of virus entry into fish. Bacillus subtilis is a probiotic with excellent antiviral properties, of which one of its secretions, surfactin, has been shown to inhibit viral infections in mammals. Herein, we demonstrate its ability to prevent VHSV infection in olive flounder (Paralichthys olivaceus) intestinal epithelial cells (IECs) and infection in internal organs. Our findings show inhibition of VHSV infection in IECs by B. subtilis and surfactin. In addition, our findings showed inhibition of VHSV in Epithelioma Papulosum Cyprini (EPC) cells inoculated with intestinal homogenates from the fish pretreated with B. subtilis by oral exposure, while the untreated fish had cytopathic effects (CPE) caused by VHSV infection in the intestines at 48 h after the VHSV challenge. At 96 h post-challenge, samples from the untreated fish had CPE from head kidney and spleen homogenates and no CPE were observed in the intestinal homogenates, while the B. subtilis-pretreated fish had no CPE in all organs. These findings demonstrate that inhibition of VHSV infection at portals of virus entry in the intestines culminated in prevention of infection in internal organs. In summary, our results show that B. subtilis has the potential to prevent VHSV infection in fish and that its use as a probiotic in aquaculture has the potential to serve as an antiviral therapeutic agent against different viral infections.


Assuntos
Antibiose , Bacillus subtilis/fisiologia , Células Epiteliais/virologia , Doenças dos Peixes/virologia , Linguado/virologia , Mucosa Intestinal/virologia , Infecções por Rhabdoviridae/veterinária , Animais , Células Cultivadas , Novirhabdovirus
8.
Sci Rep ; 10(1): 20364, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230226

RESUMO

Tilapia lake virus (TiLV) causes high mortality and high economic losses in tilapines. We describe an experimental challenge study focusing on early post challenge innate immune responses. Nile tilapia (Oreochromis niloticus) were infected with 105 TCID50/mL TiLV intraperitoneally, followed by virus quantification, histopathology and gene expression analysis in target (brain/liver) and lymphoid (spleen/headkidney) organs at 3, 7, 12, 17, and 34 days post challenge (dpc). Onset of mortality was from 21 dpc, and cumulative mortality was 38.5% by 34 dpc. Liver and kidney histopathology developed over the period 3-17 dpc, characterized by anisocytosis, anisokaryocytosis, and formation of multinucleated hepatocytes. Viral loads were highest at early time (3 dpc) in liver, spleen and kidney, declining towards 34 dpc. In brain, viral titer peaked 17 dpc. Innate sensors, TLRs 3/7 were inversely correlated with virus titer in brain and headkidney, and IFN-ß and Mx showed a similar pattern. All organs showed increased mRNA IgM expression over the course of infection. Overall, high virus titers downplay innate responses, and an increase is seen when viral titers decline. In silico modeling found that TiLV segments 4, 5 and 10 carry nucleolar localization signals. Anti-viral effects of TiLV facilitate production of virus at early stage of infection.


Assuntos
Ciclídeos/imunologia , Doenças dos Peixes/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Vírus de RNA de Sentido Negativo/patogenicidade , Animais , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/genética , Encéfalo/imunologia , Encéfalo/virologia , Ciclídeos/virologia , Doenças dos Peixes/mortalidade , Doenças dos Peixes/patologia , Doenças dos Peixes/virologia , Regulação da Expressão Gênica , Hepatócitos/imunologia , Hepatócitos/virologia , Imunoglobulina M/biossíntese , Imunoglobulina M/genética , Interferon beta/genética , Interferon beta/imunologia , Rim/imunologia , Rim/virologia , Fígado/imunologia , Fígado/virologia , Vírus de RNA de Sentido Negativo/crescimento & desenvolvimento , Vírus de RNA de Sentido Negativo/imunologia , Baço/imunologia , Baço/virologia , Análise de Sobrevida , Fatores de Tempo , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologia
10.
Viruses ; 12(9)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878170

RESUMO

Bluetongue (BT) is an arthropod-borne viral disease of ruminants with serious trade and socio-economic implications. Although the disease has been reported in a number of countries in sub-Saharan Africa, there is currently no information on circulating serotypes and disease distribution in Zambia. Following surveillance for BT in domestic and wild ruminants in Zambia, BT virus (BTV) nucleic acid and antibodies were detected in eight of the 10 provinces of the country. About 40% (87/215) of pooled blood samples from cattle and goats were positive for BTV nucleic acid, while one hartebeest pool (1/43) was positive among wildlife samples. Sequence analysis of segment 2 revealed presence of serotypes 3, 5, 7, 12 and 15, with five nucleotypes (B, E, F, G and J) being identified. Segment 10 phylogeny showed Zambian BTV sequences clustering with Western topotype strains from South Africa, intimating likely transboundary spread of BTV in Southern Africa. Interestingly, two Zambian viruses and one isolate from Israel formed a novel clade, which we designated as Western topotype 4. The high seroprevalence (96.2%) in cattle from Lusaka and Central provinces and co-circulation of multiple serotypes showed that BT is widespread, underscoring the need for prevention and control strategies.


Assuntos
Vírus Bluetongue/isolamento & purificação , Bluetongue/virologia , Doenças dos Bovinos/virologia , Doenças das Cabras/virologia , Doenças dos Ovinos/virologia , Animais , Bluetongue/epidemiologia , Vírus Bluetongue/classificação , Vírus Bluetongue/genética , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças das Cabras/epidemiologia , Cabras , Filogenia , Ovinos , Doenças dos Ovinos/epidemiologia , Zâmbia/epidemiologia
11.
PLoS One ; 15(3): e0230739, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32214386

RESUMO

The autovaccine was produced in-house using a bacterial isolate from a diseased fish from the target farm. Three groups of 150 fish each were injected with either 1) an oil-adjuvanted, inactivated whole cell autovaccine, 2) adjuvant only or 3) PBS (negative control). Approximately 660 degree days post vaccination, the fish were challenged with 9x105 cfu bacteria/fish by intraperitoneal injection and monitored for a further 28 days. Protection against infections was measured by lack of/reduced bacterial loads both by bacterial re-isolation and immunohistochemistry as well as absence of clinical signs/pathology. Significantly less L. garvieae (p<0.03) was re-isolated from either the adjuvant only or control groups compared to the vaccinated group. Furthermore, a significantly high amount (p<0.001) of anti-L. garvieae specific antibodies were observed in the vaccinated group compared to the adjuvant only or control groups at time of challenge. This coincided with protection against infection measured by absence/reduced L. garvieae re-isolation from internal organs, reduced clinical signs and lack of pathology in this group. In the adjuvant only and control groups, bacteria were re-isolated from the kidney, liver, spleen, brain and eyes during the first 14 days. The findings suggest that oil-based vaccines can protect tilapia against L. garvieae infection through an antibody mediated response.


Assuntos
Autovacinas/imunologia , Ciclídeos/imunologia , Ciclídeos/microbiologia , Doenças dos Peixes/prevenção & controle , Lactococcus/fisiologia , Animais , Autopsia , Doenças dos Peixes/patologia , Especificidade de Órgãos
12.
Viruses ; 11(10)2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554184

RESUMO

Tilapia is the second most farmed fish species after carp in the world. However, the production has come under threat due to emerging diseases such as tilapia lake virus (TiLV) that causes massive mortalities with high economic losses. It is largely unknown whether different tilapia strains are equally susceptible to TiLV infection. In the present study we compared the susceptibility of gray (Oreochromis niloticus x O. aureus) and red tilapia (Oreochromis spp.) to experimental TiLV infection. Virus was injected intraperitoneally at a concentration of 104 TCID50/mL. Our findings show that gray tilapia had a lower mortality, 86.44%, but statistically not significantly different (p = 0.068) from red tilapia (100%). The duration of the mortality period from onset to cessation was similar for the two species, starting at 2-3 days post challenge (dpc) with a median at 10-11 dpi and ending on 20-22 dpi. In addition, there was no difference between species in mean viral loads in brain, liver and headkidney from fish collected soon after death. As for host response, expression levels of IL-1ß and TNFα were equally high in brain and headkidney samples while levels in liver samples were low for both red and gray tilapia, which coincides with lower viral loads in liver compared to brain and headkidney for both species. We find that red and gray tilapia were equally susceptible to TiLV infection with similar post challenge mortality levels, equal virus concentration in target organs and similar proinflammatory cytokine responses in target and lymphoid organs at time of death. Nonetheless, we advocate that the search for less susceptible tilapia strains should continue with the view to reduce losses from TiLV infection in aquaculture.


Assuntos
Doenças dos Peixes/virologia , Vírus de RNA/patogenicidade , Tilápia/virologia , Animais , Aquicultura , Citocinas/genética , Suscetibilidade a Doenças , Doenças dos Peixes/imunologia , Doenças dos Peixes/mortalidade , Expressão Gênica , Análise de Sobrevida , Carga Viral
13.
Front Microbiol ; 8: 406, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28382024

RESUMO

The global expansion of the aquaculture industry has brought with it a corresponding increase of novel viruses infecting different aquatic organisms. These emerging viral pathogens have proved to be a challenge to the use of traditional cell-cultures and immunoassays for identification of new viruses especially in situations where the novel viruses are unculturable and no antibodies exist for their identification. Viral metagenomics has the potential to identify novel viruses without prior knowledge of their genomic sequence data and may provide a solution for the study of unculturable viruses. This review provides a synopsis on the contribution of viral metagenomics to the discovery of viruses infecting different aquatic organisms as well as its potential role in viral diagnostics. High throughput Next Generation sequencing (NGS) and library construction used in metagenomic projects have simplified the task of generating complete viral genomes unlike the challenge faced in traditional methods that use multiple primers targeted at different segments and VPs to generate the entire genome of a novel virus. In terms of diagnostics, studies carried out this far show that viral metagenomics has the potential to serve as a multifaceted tool able to study and identify etiological agents of single infections, co-infections, tissue tropism, profiling viral infections of different aquatic organisms, epidemiological monitoring of disease prevalence, evolutionary phylogenetic analyses, and the study of genomic diversity in quasispecies viruses. With sequencing technologies and bioinformatics analytical tools becoming cheaper and easier, we anticipate that metagenomics will soon become a routine tool for the discovery, study, and identification of novel pathogens including viruses to enable timely disease control for emerging diseases in aquaculture.

14.
Front Microbiol ; 7: 1986, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018317

RESUMO

Studies on the epidemiology of viral diseases in aquaculture have for a long time depended on isolation of viruses from infected aquatic organisms. The role of aquatic environments in the epidemiology of viral diseases in aquaculture has not been extensively expounded mainly because of the lack of appropriate tools for environmental studies on aquatic viruses. However, the upcoming of metagenomics analyses opens great avenues in which environmental samples can be used to study the epidemiology of viral diseases outside their host species. Hence, in this review I have shown that epidemiological factors that influence the composition of viruses in different aquatic environments include ecological factors, anthropogenic activities and stocking densities of cultured organisms based on environmental metagenomics studies carried out this far. Ballast water transportation and global trade of aquatic organisms are the most common virus dispersal process identified this far. In terms of disease control for outdoor aquaculture systems, baseline data on viruses found in different environments intended for aquaculture use can be obtained to enable the design of effective disease control strategies. And as such, high-risk areas having a high specter of pathogenic viruses can be identified as an early warning system. As for the control of viral diseases for indoor recirculation aquaculture systems (RAS), the most effective disinfection methods able to eliminate pathogenic viruses from water used in RAS can be identified. Overall, the synopsis I have put forth in this review shows that environmental samples can be used to study the epidemiology of viral diseases in aquaculture using viral metagenomics analysis as an overture for the design of rational disease control strategies.

15.
Front Microbiol ; 7: 1393, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27630636

RESUMO

Infectious pancreatic necrosis virus (IPNV) is the causative agent of IPN, an important disease of salmonids. IPNV infections result in either sub-clinical or overt disease and the basis of this difference is not well-understood. The objective of the present study was to determine the VP2 gene of the virus associated with the different forms of clinical manifestation. Groups of Atlantic salmon (Salmo salar L.) reared in farms located in different IPN disease pressures were monitored from brood stock until grow-out over a 3 year period. Hatcheries A1 and B1 as well as cooperating seawater farms were located in a low disease risk area while hatcheries A2 and B2 as well as their cooperating seawater farms were in high IPN risk areas. Samples including eggs, milt, whole fry, kidney depending on the stage of production were collected during outbreaks or in apparently healthy populations where no outbreaks occurred. The virus was re-isolated in CHSE cells and the VP2 gene amplified by RT-PCR followed by sequencing. During the freshwater stage, there were no disease outbreaks at hatcheries A1, A2, and B1 (except in one fish group that originated from hatchery B2), although IPNV was isolated from some of the fish groups at all 3 hatcheries. By contrast, all fish groups at hatchery B2 suffered IPN outbreaks. In seawater, only groups of fish originating from hatchery A1 had no IPN outbreaks albeit virus being isolated from the fish. On the other hand, fish originating from hatcheries A2, B1, and B2 experienced outbreaks in seawater. The VP2 amino acid fingerprint of the virus associated with subclinical infections from A1 and co-operating seawater sites was V64A137P217T221A247N252S281D282E319. By contrast, all virus isolates associated with clinical infections had the motif I64T137T217A221T247V252T281N282A319, where underlined amino acids represent the avirulent and highly virulent motif, respectively. Phylogenetic analysis of amino acid sequences showed 2 clades, one of isolates associated with subclinical infections (from A1 and cooperating seawater farms) and the other of isolates from fish with overt disease (all other sites). Furthermore, the clustering pattern of isolates suggests more circulation of virus within fish groups rather than between them.

16.
Vet Ital ; 50(2): 117-29, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24981913

RESUMO

Few studies have explicitly examined the linkages between human health, animal disease control and poverty alleviation. This paper reviews the contribution that veterinary medicine can make to poverty alleviation in sub-Saharan Africa. Our analysis attempts to explore aspects of this contribution under five themes: food production; food safety; impact and control of zoonotic infections; promotion of ecotourism; and environmental protection. While these areas of human activity have, more or less, fallen under the influence of the veterinary profession to varying degrees, we attempt to unify this mandate using a 'One Health' narrative, for the purpose of providing clarity on the linkages between the veterinary and other professions, livestock production and poverty alleviation. Future opportunities for improving health and reducing poverty in the context of developing African countries are also discussed. We conclude that veterinary science is uniquely positioned to play a key role in both poverty reduction and the promotion of health, a role that can be enhanced through the reorientation of the profession's goals and the creation of synergies with allied and related professions.


Assuntos
Países em Desenvolvimento , Pobreza/prevenção & controle , Saúde Pública , Medicina Veterinária , África Subsaariana , Animais , Conservação dos Recursos Naturais , Inocuidade dos Alimentos , Humanos , Viagem , Zoonoses/prevenção & controle
17.
PLoS One ; 8(2): e54656, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23431359

RESUMO

We have studied stress-induced reversion to virulence of infectious pancreatic necrosis virus (IPNV) in persistently infected Atlantic salmon (Salmo salar L.) fry. Naïve fry were persistently infected with a virulent strain (T(217)A(221) of major structural virus protein 2, VP2) or a low virulent (T(217)T(221)) variant of IPNV. The fry were infected prior to immunocompetence as documented by lack of recombination activating gene-1, T-cell receptor and B-cell receptor mRNA expression at time of challenge. The fish were followed over 6 months and monitored monthly for presence of virus and viral genome mutations. No mutation was identified in the TA or TT group over the 6 months period post infection. Six months post infection TA and TT infected groups were subject to daily stress for 7 days and then sampled weekly for an additional period of 28 days post stress. Stress-responses were documented by down-regulation of mRNA expression of IFN-α1 and concomitant increase of replication levels of T(217)T(221) infected fish at day 1 post stress. By 28 days post stress a T221A reversion was found in 3 of 6 fish in the T(217)T(221) infected group. Sequencing of reverted isolates showed single nucleotide peaks on chromatograms for residue 221 for all three isolates and no mix of TA and TT strains. Replication fitness of reverted (TA) and non-reverted (TT) variants was studied in vitro under an antiviral state induced by recombinant IFN-α1. The T(217)A(221) reverted variant replicated to levels 23-fold higher than the T(217)T(221) strain in IFN-α1 treated cells. Finally, reverted TA strains were virulent when tested in an in vivo trial in susceptible salmon fry. In conclusion, these results indicate that stress plays a key role in viral replication in vivo and can facilitate conditions that will allow reversion from attenuated virus variants of IPNV.


Assuntos
Infecções por Birnaviridae/veterinária , Doenças dos Peixes/virologia , Pancreatopatias/veterinária , Salmo salar/virologia , Ativação Viral , Animais , Sequência de Bases , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/mortalidade , Infecções por Birnaviridae/virologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Células Cultivadas , Doenças dos Peixes/imunologia , Doenças dos Peixes/mortalidade , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Genes Virais , Genótipo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Ligação de Hidrogênio , Imunoglobulina M/genética , Imunoglobulina M/metabolismo , Vírus da Necrose Pancreática Infecciosa/genética , Vírus da Necrose Pancreática Infecciosa/patogenicidade , Vírus da Necrose Pancreática Infecciosa/fisiologia , Interferon-alfa/genética , Interferon-alfa/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Oncorhynchus mykiss , Pancreatopatias/imunologia , Pancreatopatias/mortalidade , Pancreatopatias/virologia , Conformação Proteica , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Salmo salar/imunologia , Análise de Sequência de DNA , Estresse Fisiológico , Virulência/genética , Replicação Viral
18.
PLoS One ; 8(1): e54263, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23349841

RESUMO

Infectious pancreatic necrosis virus (IPNV) is a member of the family Birnaviridae that has been linked to high mortalities in juvenile salmonids and postsmolt stages of Atlantic salmon (Salmo salar L.) after transfer to seawater. IPN vaccines have been available for a long time but their efficacy has been variable. The reason for the varying immune response to these vaccines has not well defined and studies on the importance of using vaccine trains homologous to the virulent field strain has not been conclusive. In this study we prepared one vaccine identical to the virulent Norwegian Sp strain NVI-015 (NCBI: 379740) (T(217)A(221)T(247) of VP2) and three other vaccine strains developed using the same genomic backbone altered by reverse genetics at three residues yielding variants, T(217)T(221)T(247), P(217)A(221)A(247), P(217)T(221)A(247). These 4 strains, differing in these three positions only, were used as inactivated, oil-adjuvanted vaccines while two strains, T(217)A(221)T(247) and P(217)T(221)A(247), were used as live vaccines. The results show that these three residues of the VP2 capsid play a key role for immunogenicity of IPNV vaccines. The virulent strain for inactivated vaccines elicited the highest level of virus neutralization (VN) titers and ELISA antibodies. Interestingly, differences in immunogenicity were not reflected in differences in post challenge survival percentages (PCSP) for oil-adjuvanted, inactivated vaccines but clearly so for live vaccines (TAT and PTA). Further post challenge viral carrier state correlated inversely with VN titers at challenge for inactivated vaccines and prevalence of pathology in target organs inversely correlated with protection for live vaccines. Overall, our findings show that a few residues localized on the VP2-capsid are important for immunogenicity of IPNV vaccines.


Assuntos
Aminoácidos/imunologia , Doenças dos Peixes/imunologia , Vírus da Necrose Pancreática Infecciosa/imunologia , Salmo salar/imunologia , Proteínas Estruturais Virais/imunologia , Alanina/genética , Alanina/imunologia , Aminoácidos/genética , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Reações Cruzadas/imunologia , Doenças dos Peixes/mortalidade , Doenças dos Peixes/virologia , Interações Hospedeiro-Patógeno/imunologia , Imuno-Histoquímica , Vírus da Necrose Pancreática Infecciosa/genética , Vírus da Necrose Pancreática Infecciosa/fisiologia , Pâncreas Exócrino/imunologia , Pâncreas Exócrino/virologia , Prolina/genética , Prolina/imunologia , Salmo salar/virologia , Análise de Sobrevida , Taxa de Sobrevida , Treonina/genética , Treonina/imunologia , Fatores de Tempo , Vacinação/métodos , Vacinas Atenuadas/imunologia , Vacinas de Produtos Inativados/imunologia , Proteínas Estruturais Virais/genética , Vacinas Virais/imunologia
19.
J S Afr Vet Assoc ; 84(1): E1-4, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25687581

RESUMO

Nucleotide sequences of the VP2 hypervariable region (VP2-HVR) of 10 infectious bursal disease viruses detected in indigenous and exotic chickens in Zambia from 2004 to 2005 were determined. Phylogenetic analysis showed that the viruses diverged into two genotypes and belonged to the African very virulent types (VV1 and VV2). In the phylogenetic tree, strains in one genotype clustered in a distinct group and were closely related to some strains isolated in western Africa (VV1), with nucleotide similarities of 95.7%- 96.5%. Strains in the other genotype were clustered within the eastern African VV type (VV2), with nucleotide similarities of 97.3%- 98.5%. Both genotypes were distributed in the southern parts of Zambia and had a unique conserved amino acid substitution at 300 (E→A) in addition to the putative virulence marker at positions 222(A), 242(I), 256(I), 294(I) and 299(S). These findings represent the first documentation of the existence of the African VV-IBDV variants in both indigenous and exotic chickens in Zambia.


Assuntos
Infecções por Birnaviridae/veterinária , Proteínas do Capsídeo/genética , Vírus da Doença Infecciosa da Bursa/genética , Epidemiologia Molecular , Doenças das Aves Domésticas/epidemiologia , Animais , Infecções por Birnaviridae/epidemiologia , Infecções por Birnaviridae/genética , Infecções por Birnaviridae/virologia , Proteínas do Capsídeo/metabolismo , Galinhas , Genótipo , Vírus da Doença Infecciosa da Bursa/metabolismo , Dados de Sequência Molecular , Filogenia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/virologia , Análise de Sequência de RNA/veterinária , Zâmbia/epidemiologia
20.
Vaccine ; 30(27): 4007-16, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22537985

RESUMO

Two strains of IPNV made by reverse genetics on the Norwegian Sp strain NVI-015 (GenBank AY379740) backbone encoding the virulent (T(217)A(221)) and avirulent (P(217)T(221)) motifs were used to prepare inactivated whole virus (IWV), nanoparticle vaccines with whole virus, Escherichia coli subunit encoding truncated VP2-TA and VP2-PT, VP2-TA and VP2-PT fusion antigens with putative translocating domains of Pseudomonas aeruginosa exotoxin, and plasmid DNA encoding segment A of the TA strain. Post challenge survival percentages (PCSP) showed that IWV vaccines conferred highest protection (PCSP=42-53) while nanoparticle, sub-unit recombinant and DNA vaccines fell short of the IWV vaccines in Atlantic salmon (Salmo salar L.) postsmolts challenged with the highly virulent Sp strain NVI-015 (TA strain) of IPNV after 560 degree days post vaccination. Antibody levels induced by these vaccines did not show antigenic differences between the virulent and avirulent motifs for vaccines made with the same antigen dose and delivery system after 8 weeks post vaccination. Our findings show that fish vaccinated with less potent vaccines comprising of nanoparticle, DNA and recombinant vaccines got infected much earlier and yielded to higher infection rates than fish vaccinated with IWV vaccines that were highly potent. Ability of the virulent (T(217)A(221)) and avirulent (P(217)T(221)) motifs to limit establishment of infection showed equal protection for vaccines made of the same antigen dose and delivery systems. Prevention of tissue damage linked to viral infection was eminent in the more potent vaccines than the less protective ones. Hence, there still remains the challenge of developing highly efficacious vaccines with the ability to eliminate the post challenge carrier state in IPNV vaccinology.


Assuntos
Infecções por Birnaviridae/veterinária , Doenças dos Peixes/prevenção & controle , Vírus da Necrose Pancreática Infecciosa/imunologia , Vacinação/métodos , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Toxinas Bacterianas/genética , Infecções por Birnaviridae/prevenção & controle , Portadores de Fármacos/administração & dosagem , Escherichia coli/genética , Doenças dos Peixes/virologia , Nanopartículas/administração & dosagem , Pseudomonas aeruginosa/genética , Salmo salar , Análise de Sobrevida , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/genética , Vacinas de Produtos Inativados/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA