Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
World J Microbiol Biotechnol ; 40(8): 250, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910219

RESUMO

Aeromonas hydrophila, an opportunistic warm water pathogen, has always been a threat to aquaculture, leading to substantial economic losses. Vaccination of the cultured fish would effectively prevent Aeromoniasis, and recent advancements in nanotechnology show promise for efficacious vaccines. Oral delivery would be the most practical and convenient method of vaccine delivery in a grow-out pond. This study studied the immunogenicity and protective efficacy of a nanoparticle-loaded outer membrane protein A from A. hydrophila in the zebrafish model. The protein was over-expressed, purified, and encapsulated using poly lactic-co-glycolic acid (PLGA) nanoparticles via the double emulsion method. The PLGA nanoparticles loaded with recombinant OmpA (rOmpA) exhibited a size of 295 ± 15.1 nm, an encapsulation efficiency of 72.52%, and a polydispersity index of 0.292 ± 0.07. Scanning electron microscopy confirmed the spherical and isolated nature of the PLGA-rOmpA nanoparticles. The protective efficacy in A. hydrophila-infected zebrafish after oral administration of the nanovaccine resulted in relative percentage survival of 77.7. Gene expression studies showed significant upregulation of immune genes in the vaccinated fish. The results demonstrate the usefulness of oral administration of nanovaccine-loaded rOmpA as a potential vaccine since it induced a robust immune response and conferred adequate protection against A. hydrophila in zebrafish, Danio rerio.


Assuntos
Aeromonas hydrophila , Proteínas da Membrana Bacteriana Externa , Vacinas Bacterianas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Nanopartículas , Proteínas Recombinantes , Peixe-Zebra , Animais , Peixe-Zebra/imunologia , Aeromonas hydrophila/imunologia , Aeromonas hydrophila/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Administração Oral , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Vacinação , Nanovacinas
2.
Front Immunol ; 15: 1401086, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903507

RESUMO

The mitochondrial anti-viral signaling (MAVS) protein is an intermediary adaptor protein of retinoic acid-inducible gene-1 (RIG-I) like receptor (RLR) signaling, which activates the transcription factor interferon (IFN) regulatory factor 3 (IRF3) and NF-kB to produce type I IFNs. MAVS expression has been reported in different fish species, but few studies have shown its functional role in anti-viral responses to fish viruses. In this study, we used the transcription activator-like effector nuclease (TALEN) as a gene editing tool to disrupt the function of MAVS in Chinook salmon (Oncorhynchus tshawytscha) embryonic cells (CHSE) to understand its role in induction of interferon I responses to infections with the (+) RNA virus salmonid alphavirus subtype 3 (SAV-3), and the dsRNA virus infectious pancreatic necrosis virus (IPNV) infection. A MAVS-disrupted CHSE clone with a 7-aa polypeptide (GVFVSRV) deletion mutation at the N-terminal of the CARD domain infected with SAV-3 resulted in significantly lower expression of IRF3, IFNa, and ISGs and increased viral titer (1.5 log10) compared to wild-type. In contrast, the IPNV titer in MAVS-disrupted cells was not different from the wild-type. Furthermore, overexpression of salmon MAVS in MAVS-disrupted CHSE cells rescued the impaired type I IFN-mediated anti-viral effect against SAV-3.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Infecções por Alphavirus , Alphavirus , Doenças dos Peixes , Vírus da Necrose Pancreática Infecciosa , Transdução de Sinais , Replicação Viral , Animais , Vírus da Necrose Pancreática Infecciosa/fisiologia , Vírus da Necrose Pancreática Infecciosa/imunologia , Alphavirus/imunologia , Alphavirus/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Infecções por Alphavirus/imunologia , Infecções por Alphavirus/virologia , Salmão/virologia , Salmão/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/veterinária , Infecções por Birnaviridae/virologia
3.
Mol Biotechnol ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512427

RESUMO

Aquaculture production has been incurring economic losses due to infectious diseases by opportunistic pathogens like Aeromonas hydrophila, a bacterial agent that commonly affects warm water aquacultured fish. Developing an effective vaccine with an appropriate delivery system can elicit an immune response that would be a useful disease management strategy through prevention. The most practical method of administration would be the oral delivery of vaccine developed through nano-biotechnology. In this study, the gene encoding an outer membrane protein, maltoporin, of A. hydrophila, was identified, sequenced, and studied using bioinformatics tools to examine its potential as a vaccine candidate. Using a double emulsion method, the molecule was cloned, over-expressed, and encapsulated in a biodegradable polymer polylactic-co-glycolic acid (PLGA). The immunogenicity of maltoporin was identified through in silico analysis and thus taken up for nanovaccine preparation. The encapsulation efficiency of maltoporin was 63%, with an in vitro release of 55% protein in 48 h. The particle size and morphology of the encapsulated protein exhibited properties that could induce stability and function as an effective carrier system to deliver the antigen to the site and trigger immune response. Results show promise that the PLGA-mediated delivery system could be a potential carrier in developing a fish vaccine via oral administration. They provide insight for developing nanovaccine, since sustained in vitro release and biocompatibility were observed. There is further scope to study the immune response and examine the protective immunity induced by the nanoparticle-encapsulated maltoporin by oral delivery to fish.

4.
Fish Shellfish Immunol ; 145: 109331, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142830

RESUMO

Chemokines are small, secreted proteins with chemoattractive properties, which play an important role in the recruitment and activation of immune cells. CXCL11 is a CXC chemokine specific for the CXCR3 receptors, which has been shown to mediate the generation of Th1-type immune responses and have bactericidal effects similar to defensins. Herein, we cloned the full-length cDNA of Chinese soft-shelled turtle (Pelodiscus sinensis) CXCL11, designated as PsCXCL11, which consist of an open reading frame (ORF) of 282 bp encoding 93 amino acids, with estimated molecular weight of 10.055 kDa and isoelectric point of 10.37. The deduced PsCXCL11 sequence had a signal peptide, a highly conserved family-specific small cytokine (SCY) domain, one putative N-glycosylation site and ten potential phosphorylation sites. Phylogenetic analysis showed a close relationship between P. sinensis and Chelydra Serpentina CXCL11. P. sinensis CXCL11 basal expression levels were higher in heart, kidney and spleen than in other organs of health turtles. Infections of Aeromonas hydrophila and Staphylococcus aureus led to significant upregulation of P. sinensis CXCL11 in the blood, while significant upregulation of PsCXCL11 were observed in liver and spleen after infection of A. hydrophila, but not S. aureus. PsCXCL11 recombinant protein with His-tag was successfully expressed by an auto-inducible expression system, and purified by Ni-NTA affinity chromatography. These findings laid a solid foundation for further research towards development of the Chinese soft-shelled turtle as a model for the role of CXCL11 in regulating inflammatory responses to stimulation by invading pathogens.


Assuntos
Tartarugas , Animais , Tartarugas/genética , Quimiocina CXCL11/genética , Filogenia , Clonagem Molecular , Citocinas/genética
5.
Heliyon ; 9(12): e22669, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38144336

RESUMO

The Gram-negative bacterium Pseudomonas plecoglossicida has caused visceral granulomas disease in several farmed fish species, including large yellow croaker (Larimichthys crocea), which results in severe economic losses. Type III secretion systems (T3SS) are protein secretion and translocation nanomachines widely employed by many Gram-negative bacterial pathogens for infection and pathogenicity. However, the exact role of T3SS in the pathogenesis of P. plecoglossicida infection is still unclear. In this study, a T3SS translocators deletion strain (△popBD) of P. plecoglossicida was constructed to investigate the function of T3SS. Then comparative secretome analysis of the P. plecoglossicida wild-type (WT) and △popBD mutant strains was conducted by label-free quantitation (LFQ) mass spectrometry. The results show that knockout of T3SS translocators popB and popD has an adverse effect on the effector protein ExoU secretion, flagella assembly, and biofilm formation. Further experimental validations also confirmed that popB-popD deletion could affect the P. plecoglossicida flagella morphology/formation, adherence, mobility, and biofilm formation. These data indicate that a cross-talk exists between the P. plecoglossicida T3SS and the flagella system. Our results, therefore, will facilitate the further under-standing of the pathogenic mechanisms leading to visceral granulomas disease caused by P. plecoglossicida.

7.
Microb Pathog ; 185: 106429, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37940062

RESUMO

Eco-friendly alternatives such as probiotics are needed to prevent economically relevant infectious diseases for a successful disease-free harvest in aquaculture. The use of antibiotics has been the favored practice, but its empirical and indiscriminate use has led to antibiotic resistance in the aquatic environment and residues in the food fish. With this rationale, a probiotic was isolated from tilapia, a commercially important cultured fish worldwide. The characteristics of the probiotic were checked against common bacterial pathogens affecting aquaculture. In vitro tests demonstrated the inhibitory effects of the isolated probiotic on the growth of Aeromonas hydrophila, Edwardsiella tarda, Vibrio anguillarum, and V. alginolyticus. The candidate probiotic, referred to as TLDK301120C24, was identified as Bacillus subtilis by a battery of biochemical tests and genotypic confirmation by 16S rDNA sequencing. The in vitro results revealed the ability of the probiotic to withstand the gut conditions that included pH range of 3-9, salt concentration of 0.5-6%, and bile salt concentration of up to 6%. The isolate could hydrolyze starch (12-14 mm clearance zone), protein (20-22 mm clearance zone), and cellulose (22-24 mm clearance zone). Further, the inhibitory ability of the probiotic against aquatic pathogens was determined in vivo using gnotobiotic zebrafish by employing a novel approach that involved tagging the probiotic with a red fluorescent protein and the pathogens with a green fluorescent protein, respectively. The colonizing ability of probiotics and its inhibitory effects against the pathogens were evaluated by fluorescence microscopy, PCR, and estimation of viable counts in LBA + Amp plates. Finally, the competitive inhibition and exclusion of fish pathogens A. hydrophila and E. tarda by B. subtilis was confirmed semi-quantitatively, through challenge experiments. This study shows the potential of B. subtilis as a probiotic and its excellent ability to inhibit major fish pathogens in vivo and in vitro. It also shows promise as a potent substitute for antibiotics.


Assuntos
Doenças dos Peixes , Probióticos , Tilápia , Animais , Bacillus subtilis/genética , Peixe-Zebra , Probióticos/farmacologia , Antibacterianos/farmacologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia
8.
Fish Shellfish Immunol ; 143: 109174, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37858783

RESUMO

Turbot (Scophthalmus maximus) is a commercially important marine flatfish for global aquaculture. With intensive farming, turbot production is limited by several diseases, in which Aeromonas salmonicida and Edwardsiella tarda are two main causative agents. Vaccination is an effective and safe alternative to disease prevention compared to antibiotic treatment. In the previous study, we developed an inactivated bivalent vaccine against A. salmonicida and E. tarda with relative percent survival (RPS) of 77.1 %. To understand the protection mechanism in molecular basis of the inactivated bivalent vaccine against A. salmonicida and E. tarda, we use RNA-seq to analyze the transcriptomic profile of the kidney tissue after immunization. A total of 391,721,176 clean reads were generated in nine libraries by RNA-seq, and 96.35 % of the clean reads were mapped to the reference genome of S. maximus. 1458 (866 upregulated and 592 downregulated) and 2220 (1131 upregulated and 1089 downregulated) differentially expressed genes (DEGs) were obtained at 2 and 4 weeks post-vaccination, respectively. The DEGs were enriched in several important immune-related GO terms, including cytokine activity, immune response, and defense response. In addition, the analysis of several immune-related genes showed upregulation and downregulation, including pattern recognition receptors, complement system, cytokines, chemokines and immune cell surface markers. Eight DEGs (ccr10, calr, casr, mybpha, cd28, thr18, cd20a.3 and c5) were randomly selected for qRT-PCR analysis, which confirmed the validity of the RNA-seq. Our results provide valuable insight into the immune mechanism of inactivated bivalent vaccine against A. salmonicida and E. tarda in Scophthalmus maximus.


Assuntos
Aeromonas salmonicida , Doenças dos Peixes , Linguados , Animais , Edwardsiella tarda/fisiologia , Vacinas de Produtos Inativados , Perfilação da Expressão Gênica/veterinária , Transcriptoma , Rim , Vacinas Combinadas
9.
Vaccines (Basel) ; 11(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37896958

RESUMO

The application of nanotechnology in aquaculture for developing efficient vaccines has shown great potential in recent years. Nanovaccination, which involves encapsulating antigens of fish pathogens in various polymeric materials and nanoparticles, can afford protection to the antigens and a sustained release of the molecule. Oral administration of nanoparticles would be a convenient and cost-effective method for delivering vaccines in aquaculture while eliminating the need for stressful, labour-intensive injectables. The small size of nanoparticles allows them to overcome the degradative digestive enzymes and help deliver antigens to the target site of the fish more effectively. This targeted-delivery approach would help trigger cellular and humoral immune responses more efficiently, thereby enhancing the protective efficacy of vaccines. This is particularly relevant for combating diseases caused by pathogens like Aeromonas hydrophila, a major fish pathogen responsible for significant morbidity and mortality in the aquaculture sector. While the use of nanoparticle-based vaccines in aquaculture has shown promise, concerns exist about the potential toxicity associated with certain types of nanoparticles. Some nanoparticles have been found to exhibit varying degrees of toxicity, and their safety profiles need to be thoroughly assessed before widespread application. The introduction of nanovaccines has opened new vistas for improving aquaculture healthcare, but must be evaluated for potential toxicity before aquaculture applications. Details of nanovaccines and their mode of action, with a focus on protecting fish from infections and outbreaks caused by the ubiquitous opportunistic pathogen A. hydrophila, are reviewed here.

10.
J Proteome Res ; 22(11): 3489-3498, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37856871

RESUMO

Multidrug-resistant Edwardsiella tarda threatens both sustainable aquaculture and human health, but the control measure is still lacking. In this study, we adopted functional proteomics to investigate the molecular mechanism underlying norfloxacin (NOR) resistance in E. tarda. We found that E. tarda had a global proteomic shift upon acquisition of NOR resistance, featured with increased expression of siderophore biosynthesis and Fe3+-hydroxamate transport. Thus, either inhibition of siderophore biosynthesis with salicyl-AMS or treatment with another antibiotic, kitasamycin (Kit), which was uptake through Fe3+-hydroxamate transport, enhanced NOR killing of NOR-resistant E. tarda both in vivo and in vitro. Moreover, the combination of NOR, salicyl-AMS, and Kit had the highest efficacy in promoting the killing effects of NOR than any drug alone. Such synergistic effect not only confirmed in vitro and in vivo bacterial killing assays but also applicable to other clinic E. tarda isolates. Thus, our data suggest a proteomic-based approach to identify potential targets to enhance antibiotic killing and propose an alternative way to control infection of multidrug-resistant E. tarda.


Assuntos
Doenças dos Peixes , Norfloxacino , Humanos , Animais , Norfloxacino/farmacologia , Norfloxacino/metabolismo , Edwardsiella tarda/metabolismo , Proteômica , Sideróforos/metabolismo , Antibacterianos/farmacologia , Doenças dos Peixes/microbiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-37486455

RESUMO

The indiscriminate use of antibiotics in aquaculture has led to the emergence of resistance; hence, eco-friendly, host-specific alternatives to mitigate bacterial infections have become imminent. In this study, bacteria that could possibly serve as probiotics were isolated and evaluated for their efficacy with in vitro experiments and in vivo zebrafish gut model. One isolate from each of the 23 rohu fish (Labeo rohita) was shortlisted after preliminary screening of several isolates and tested for their ability to inhibit two important warm water bacterial fish pathogens, Aeromonas hydrophila, and Edwardsiella tarda. An isolate (RODK28110C3) that showed broad-spectrum inhibitory activity against a battery of different isolates of the two fish pathogens included in this study and maintained in our repository was selected for further characterization. The culture was identified phenotypically as Bacillus subtilis and confirmed by 16S rDNA sequencing. The isolate was able to hydrolyze fish feed constituents that include starch, protein, and cellulose. Further in vitro tests ensured that the potential isolate with probiotic attributes could tolerate different gut conditions, which included a range of pH, salinity, and varying concentrations of bile salt. Exposure of 4 days post fertilization zebrafish embryos to the RFP-tagged isolate confirmed the colonization of B. subtilis in the gut of the zebrafish embryo, which is an important attribute of a probiotic. The isolate was able to inhibit both A. hydrophila and E. tarda in gnotobiotic zebrafish embryo in triplicate. The study demonstrates the probiotic characteristics of the B. subtilis isolated from L. rohita and its ability to inhibit A. hydrophila and E. tarda using in vitro conditions and in the zebrafish gut and could serve as an effective alternative to antibiotics in aquaculture.

12.
Viruses ; 15(6)2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37376659

RESUMO

Aquaculture has expanded to become the fastest growing food-producing sector in the world. However, its expansion has come under threat due to an increase in diseases caused by pathogens such as iridoviruses commonly found in aquatic environments used for fish farming. Of the seven members belonging to the family Iridoviridae, the three genera causing diseases in fish comprise ranaviruses, lymphocystiviruses and megalocytiviruses. These three genera are serious impediments to the expansion of global aquaculture because of their tropism for a wide range of farmed-fish species in which they cause high mortality. As economic losses caused by these iridoviruses in aquaculture continue to rise, the urgent need for effective control strategies increases. As a consequence, these viruses have attracted a lot of research interest in recent years. The functional role of some of the genes that form the structure of iridoviruses has not been elucidated. There is a lack of information on the predisposing factors leading to iridovirus infections in fish, an absence of information on the risk factors leading to disease outbreaks, and a lack of data on the chemical and physical properties of iridoviruses needed for the implementation of biosecurity control measures. Thus, the synopsis put forth herein provides an update of knowledge gathered from studies carried out so far aimed at addressing the aforesaid informational gaps. In summary, this review provides an update on the etiology of different iridoviruses infecting finfish and epidemiological factors leading to the occurrence of disease outbreaks. In addition, the review provides an update on the cell lines developed for virus isolation and culture, the diagnostic tools used for virus detection and characterization, the current advances in vaccine development and the use of biosecurity in the control of iridoviruses in aquaculture. Overall, we envision that the information put forth in this review will contribute to developing effective control strategies against iridovirus infections in aquaculture.


Assuntos
Doenças dos Peixes , Iridoviridae , Iridovirus , Ranavirus , Animais , Peixes , Ranavirus/genética , Causalidade , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/prevenção & controle
13.
Front Microbiol ; 14: 1112941, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007502

RESUMO

Aeromonas veronii is a Gram-negative bacterium ubiquitously found in aquatic environments. It is a foodborne pathogen that causes diarrhea in humans and hemorrhagic septicemia in fish. In the present study, we used whole-genome sequencing (WGS) to evaluate the presence of antimicrobial resistance (AMR) and virulence genes found in A. veronii Ah5S-24 isolated from catfish pond sediments in South-East, United States. We found cphA4, dfrA3, mcr-7.1, valF, bla FOX-7, and bla OXA-12 resistance genes encoded in the chromosome of A. veronii Ah5S-24. We also found the tetracycline tet(E) and tetR genes placed next to the IS5/IS1182 transposase, integrase, and hypothetical proteins that formed as a genetic structure or transposon designated as IS5/IS1182/hp/tet(E)/tetR/hp. BLAST analysis showed that a similar mobile gene cassette (MGC) existed in chromosomes of other bacteria species such as Vibrio parahaemolyticus isolated from retail fish at markets, Aeromonas caviae from human stool and Aeromonas media from a sewage bioreactor. In addition, the IS5/IS1182/hp/tet(E)/tetR/hp cassette was also found in the plasmid of Vibrio alginolyticus isolated from shrimp. As for virulence genes, we found the tap type IV pili (tapA and tapY), polar flagellae (flgA and flgN), lateral flagellae (ifgA and IfgL), and fimbriae (pefC and pefD) genes responsible for motility and adherence. We also found the hemolysin genes (hylII, hylA, and TSH), aerA toxin, biofilm formation, and quorum sensing (LuxS, mshA, and mshQ) genes. However, there were no MGCs encoding virulence genes found in A. veronii AhS5-24. Thus, our findings show that MGCs could play a vital role in the spread of AMR genes between chromosomes and plasmids among bacteria in aquatic environments. Overall, our findings are suggesting that MGCs encoding AMR genes could play a vital role in the spread of resistance acquired from high usage of antimicrobials in aquaculture to animals and humans.

14.
Virulence ; 14(1): 2180938, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36803528

RESUMO

Streptococcus agalactiae (GBS) is an important pathogenic bacteria that infected both aquatic animals and human beings, causing huge economic loss. The increasing cases of antibiotic-resistant GBS impose challenges to treat such infection by antibiotics. Thus, it is highly demanded for the approach to tackle antibiotic resistance in GBS. In this study, we adopt a metabolomic approach to identify the metabolic signature of ampicillin-resistant GBS (AR-GBS) that ampicillin is the routine choice to treat infection by GBS. We find glycolysis is significantly repressed in AR-GBS, and fructose is the crucial biomarker. Exogenous fructose not only reverses ampicillin resistance in AR-GBS but also in clinic isolates including methicillin-resistant Staphylococcus aureus (MRSA) and NDM-1 expressing Escherichia coli. The synergistic effect is confirmed in a zebrafish infection model. Furthermore, we demonstrate that the potentiation by fructose is dependent on glycolysis that enhances ampicillin uptake and the expression of penicillin-binding proteins, the ampicillin target. Our study demonstrates a novel approach to combat antibiotic resistance in GBS.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estreptocócicas , Animais , Humanos , Antibacterianos , Streptococcus agalactiae , Peixe-Zebra , Infecções Estreptocócicas/microbiologia , Ampicilina , Escherichia coli , Testes de Sensibilidade Microbiana
15.
Front Microbiol ; 13: 1022639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532448

RESUMO

Aeromonas media is a Gram-negative bacterium ubiquitously found in aquatic environments. It is a foodborne pathogen associated with diarrhea in humans and skin ulceration in fish. In this study, we used whole genome sequencing to profile all antimicrobial resistance (AMR) and virulence genes found in A. media strain SD/21-15 isolated from marine sediments in Denmark. To gain a better understanding of virulence and AMR genes found in several A. media strains, we included 24 whole genomes retrieved from the public databanks whose isolates originate from different host species and environmental samples from Asia, Europe, and North America. We also compared the virulence genes of strain SD/21-15 with A. hydrophila, A. veronii, and A. salmonicida reference strains. We detected Msh pili, tap IV pili, and lateral flagella genes responsible for expression of motility and adherence proteins in all isolates. We also found hylA, hylIII, and TSH hemolysin genes in all isolates responsible for virulence in all isolates while the aerA gene was not detected in all A. media isolates but was present in A. hydrophila, A. veronii, and A. salmonicida reference strains. In addition, we detected LuxS and mshA-Q responsible for quorum sensing and biofilm formation as well as the ferric uptake regulator (Fur), heme and siderophore genes responsible for iron acquisition in all A. media isolates. As for the secretory systems, we found all genes that form the T2SS in all isolates while only the vgrG1, vrgG3, hcp, and ats genes that form parts of the T6SS were detected in some isolates. Presence of bla MOX-9 and bla OXA-427 ß-lactamases as well as crp and mcr genes in all isolates is suggestive that these genes were intrinsically encoded in the genomes of all A. media isolates. Finally, the presence of various transposases, integrases, recombinases, virulence, and AMR genes in the plasmids examined in this study is suggestive that A. media has the potential to transfer virulence and AMR genes to other bacteria. Overall, we anticipate these data will pave way for further studies on virulence mechanisms and the role of A. media in the spread of AMR genes.

16.
J Virol Methods ; 307: 114567, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35709972

RESUMO

Tilapia lake virus (TiLV) is an emerging viral pathogen of tilapiines worldwide in wild and farmed tilapia. TiLV is an orthomyxo-like, negative sense segmented RNA virus, belonging to genus Tilapinevirus, family Amnoonviridae. Here we developed a quantitative real-time PCR (qRT-PCR) assay testing primer sets targeting the 10 segments of TiLV. Sensitivity, specificity, efficiency and reproducibility of these assays were examined. Detection sensitivity was equivalent to 2 TCID50/ml when tested on supernatants from cell culture-grown TiLV. Specificity tests showed that all primer sets amplified their respective TiLV segments, and standard curves showed linear correlation of R2 > 0.998 and amplification efficiencies between 93 % and 98 %. Intra- and inter-assay coefficients of variation (CV %) were in the range of 0.0 %- 2.6 % and 0.0 %- 5.9 %, respectively. Sensitivity tests showed that primer sets targeting segments 1, 2, 3 and 4 had the highest detection sensitivities (100.301 TCID50/ml). The qRT-PCR used for detection of viral genome in TiLV infected organs gave virus titers equivalent to 3.80 log10, 3.94 log10 and 3.52 log10 TCID50/ml for brain, kidney and liver tissues, respectively as calculated on the basis of Ct values. These findings suggest that primer optimization for qPCR should not only focus on attaining high amplification efficiency but also sensitivity comparison of primer sets targeting different viral segments in order to develop a method with the highest sensitivity.


Assuntos
Doenças dos Peixes/diagnóstico , Doenças dos Peixes/virologia , Vírus de RNA/isolamento & purificação , Tilápia , Animais , Animais Selvagens , Encéfalo/virologia , Pesqueiros , Rim/virologia , Fígado/virologia , Vírus de RNA/classificação , Vírus de RNA/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Front Immunol ; 13: 865560, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386717

RESUMO

Aquatic food is becoming an important food source that provides micronutrients to human beings. The decline of wild aquatic animals makes aquaculture become increasingly important to play this role. However, infectious diseases, especially bacterial infection, represent severe threat to aquaculture, which causes huge economic loss. Meanwhile, strategies in managing bacterial infection in an antibiotic-independent way are still lacking. In this study, we monitor the metabolomic shift of crucian carp upon Aeromonas hydrophila infection. We find that the metabolism of the fish that died of infection is distinct from the ones that survived. By multivariate analysis, we identify fructose as a crucial biomarker whose abundance is significantly different from the dying and surviving groups where the surviving group has a higher content of fructose than the dying group. Exogenous supplementation of fructose increases fish survival rate by 27.2%. Quantitative gene expression analysis demonstrated that fructose enhances the expression of lysozyme and complement 3 expression, which is also confirmed in the serum level. Furthermore, the augmented lysozyme and C3 levels enhance serum cell lytic activity which contribute to the reduced bacterial load in vivo. Thus, our study demonstrates a metabolism-based approach to manage bacterial infection through modulating immune response to clear bacterial infection.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Aeromonas hydrophila/fisiologia , Animais , Frutose , Muramidase
18.
Dev Comp Immunol ; 121: 104072, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33798618

RESUMO

The polymeric immunoglobulin receptor (pIgR) is one of the most vital components of mucosal immunity that plays a pivotal role in mediating transcytosis of polymeric immunoglobulin (pIg) on epithelial surfaces for protection against invading pathogens. Herein, we cloned the full-length cDNA of Pelodiscus sinensis pIgR, designated as P. sinensis pIgR, made of an open reading frame (ORF) of 1848 bp, molecular weight of 68.2 kDa and estimated isoelectric point of 7.00. The deduced P. sinensis pIgR sequence had a leader peptide, extracellular region containing four immunoglobulin-like domains (Ig like domains), transmembrane and intracellular regions comparable with other vertebrates. P. sinensis pIgR contained four Ig like domains that corresponded with mammalian D1, D3, D4 and D5 similar with reptile and avian Ig like domains. It had 40 potential phosphorylation sites, four putative N-glycosylation sites and several motifs resembling mammalian pIgR motifs. Phylogenetic analysis showed a close relationship between P. sinensis pIgR with avian and reptile pIgRs. P. sinensis pIgR basal levels were higher in the esophagus, small intestine and intestinnum crissum than in other organs of health turtles. Intragastric delivery of LPS and Aeromonassobria led to significant upregulation of P. sinensis pIgR in tissues of the gastrointestinal tract. A polyclonal anti- P. sinensis pIgR antibody produced in rabbit reacted with the recombinant P. sinensis pIgR protein expressed in Escherichia coli in Western blot. These studies demonstrate the existence and immune response of P. sinensis pIgR to stimulation in mucosal organs in Chinese soft-shelled turtles.


Assuntos
Aeromonas/imunologia , Imunidade nas Mucosas , Receptores de Imunoglobulina Polimérica/metabolismo , Tartarugas/imunologia , Animais , Trato Gastrointestinal , Lipopolissacarídeos/imunologia , Filogenia , Domínios Proteicos/genética , Receptores de Imunoglobulina Polimérica/análise , Receptores de Imunoglobulina Polimérica/genética , Tartarugas/genética , Tartarugas/metabolismo , Tartarugas/microbiologia , Regulação para Cima/imunologia
20.
Front Immunol ; 11: 1362, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849496

RESUMO

Aquaculture is one of the fastest-growing food-producing sectors in the world. However, its growth is hampered by various disease problems due to infectious microorganisms, including Gram-negative bacteria in finfish aquaculture. Disease control in aquaculture by use of antibiotics is not recommended as it leads to antibiotic residues in the final product, selection, and spread of antibiotic resistance in the environment. Therefore, focus is on disease prevention by vaccination. All Gram-negative bacteria possess surface-associated outer membrane proteins (OMPs), some of which have long been recognized as potential vaccine candidates. OMPs are essential for maintaining the integrity and selective permeability of the bacterial membrane and play a key role in adaptive responses of bacteria such as solute and ion uptake, iron acquisition, antimicrobial resistance, serum resistance, and bile salt resistance and some adhesins have virulence attributes. Antigenic diversity among bacterial strains even within the same bacterial species has constrained vaccine developments, but OMPs that are conserved across serotypes could be used as potential candidates in vaccine development, and several studies have demonstrated their efficacy and potential as vaccine candidates. In this review, we will look into the application of OMPs for the design of vaccines based on recombinant proteins, subunit vaccines, chimeric proteins, and DNA vaccines as new-generation vaccine candidates for major bacterial pathogens of fish for sustainable aquaculture.


Assuntos
Vacinas Bacterianas/uso terapêutico , Doenças Transmitidas por Alimentos/prevenção & controle , Infecções por Bactérias Gram-Negativas/prevenção & controle , Alimentos Marinhos/efeitos adversos , Alimentos Marinhos/microbiologia , Animais , Aquicultura , Proteínas da Membrana Bacteriana Externa/imunologia , Doenças Transmitidas por Alimentos/etiologia , Infecções por Bactérias Gram-Negativas/etiologia , Humanos , Índia , Vacinas de Subunidades Antigênicas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA