Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(38): eadn3816, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39292778

RESUMO

CAR T cell therapy has revolutionized the treatment of a spectrum of blood-related malignancies. However, treatment responses vary among cancer types and patients. Accurate monitoring of CAR T cell dynamics is crucial for understanding and evaluating treatment efficacy. Positron emission tomography (PET) offers a comprehensive view of CAR T cell homing, especially in critical organs such as lymphoid structures and bone marrow. This information will help assess treatment response and predict relapse risk. Current PET imaging methods for CAR T require genetic modifications, limiting clinical use. To overcome this, we developed an antigen-based imaging approach enabling whole-body CAR T cell imaging. The probe detects CAR T cells in vivo without affecting their function. In an immunocompetent B cell leukemia model, CAR-PET signal in the spleen predicted early mortality risk. The antigen-based CAR-PET approach allows assessment of CAR T therapy responses without altering established clinical protocols. It seamlessly integrates with FDA-approved and future CAR T cell generations, facilitating broader clinical application.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Linfócitos T , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Animais , Imunoterapia Adotiva/métodos , Humanos , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Antígenos/imunologia
2.
Nat Biotechnol ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079964

RESUMO

Although chimeric antigen receptor (CAR) T cell therapies have demonstrated promising clinical outcomes, durable remissions remain limited. To extend the efficacy of CAR T cells, we develop a CAR enhancer (CAR-E), comprising a CAR T cell antigen fused to an immunomodulatory molecule. Here we demonstrate this strategy using B cell maturation antigen (BCMA) CAR T cells for the treatment of multiple myeloma, with a CAR-E consisting of the BCMA fused to a low-affinity interleukin 2 (IL-2). This selectively induces IL-2 signaling in CAR T cells upon antigen-CAR binding, enhancing T cell activation and antitumor activity while reducing IL-2-associated toxicities. We show that the BCMA CAR-E selectively binds CAR T cells and increases CAR T cell proliferation, clearance of tumor cells and development of memory CAR T cells. The memory cells retain the ability to re-expand upon restimulation, effectively controlling tumor growth upon rechallenge. Mechanistic studies reveal the involvement of both CAR and IL-2 receptor endodomains in the CAR-E mechanism of action. The CAR-E approach avoids the need for specific engineering and enables CAR T cell therapy with lower cell doses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA