Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34451247

RESUMO

Among the several actions contributing to the development of a sustainable society, there is the eco-design of new plastic materials with zero environmental impact but that are possibly characterized by properties comparable to those of the traditional fossil-based plastics. This action is particularly urgent for food packaging sector, which involves large volumes of plastic products that quickly become waste. This work aims to contribute to the achievement of this important goal, proposing new bio-based cycloaliphatic polymers based on trans-1,4-cyclohexanedicarboxylic acid and containing different amount of camphoric acid (from 0 to 15 mol %), a cheap and bio-based building block. Such chemical modification was conducted in the melt by avoiding the use of solvents. The so-obtained polymers were processed in the form of films by compression molding. Afterwards, the new and successfully synthesized random copolymers were characterized by molecular (NMR spectroscopy and GPC analysis), thermal (DSC and TGA analyses), diffractometric (wide angle X-ray scattering), mechanical (through tensile tests), and O2 and CO2 barrier point of view together with the parent homopolymer. The article aims to relate the results obtained with the amount of camphoric moiety introduced and to present, the different microstructure in the copolymers in more detail; indeed, in these samples, a different crystalline form developed (the so-called ß-PBCE). This latter form was the kinetically favored and less packed one, as proven by the lower equilibrium melting temperature determined for the first time by Baur's equation.

2.
Sensors (Basel) ; 21(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34300369

RESUMO

The flourishing of Internet of Things (IoT) applications, characterized by vast transmitter populations and the sporadic transmission of small data units, demands innovative solutions for the sharing of the wireless medium. In this context, satellite connectivity is an important enabler for all scenarios in which terminals are under-served by terrestrial communications and are thus fundamental for providing worldwide coverage. In turn, the design of medium access policies that attain efficient use of the scarce spectrum and can cope with flexible yet unpredictable IoT traffic is of the utmost importance. Starting from these remarks, we investigate in this work the coexistence of a quality of service (QoS)-constrained service with IoT traffic in a shared spectrum as alternative to a more traditional orthogonal allocation among the two services, with an eye on satellite applications. Leaning on analytical tools, we provide achievable rate regions, assuming a slotted ALOHA access method for IoT terminals and accounting for practical aspects, such as the transmission of short packets. Interesting trends emerge, showcasing the benefit of an overlay allocation with respect to segregating the resources for the two services.

3.
Int J Mol Sci ; 21(23)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291757

RESUMO

Herein, we present poly(butylene 1,4-cyclohexanedicarboxylate) (PBCE) films characterized by an unpatterned microstructure and a specific hydrophobicity, capable of boosting a drastic cytoskeleton architecture remodeling, culminating with the neuronal-like differentiation of human bone marrow-mesenchymal stem cells (hBM-MSCs). We have used two different filming procedures to prepare the films, solvent casting (PBCE) and compression-moulding (PBCE*). PBCE film had a rough and porous surface with spherulite-like aggregations (Ø = 10-20 µm) and was characterized by a water contact angle = 100°. PBCE* showed a smooth and continuous surface without voids and visible spherulite-like aggregations and was more hydrophobic (WCA = 110°). Both surface characteristics were modulated through the copolymerization of different amounts of ether-oxygen-containing co-units into PBCE chemical structure. We showed that only the surface characteristics of PBCE-solvent-casted films steered hBM-MSCs toward a neuronal-like differentiation. hBM-MSCs lost their canonical mesenchymal morphology, acquired a neuronal polarized shape with a long cell protrusion (≥150 µm), expressed neuron-specific class III ß-tubulin and microtubule-associated protein 2 neuronal markers, while nestin, a marker of uncommitted stem cells, was drastically silenced. These events were observed as early as 2-days after cell seeding. Of note, the phenomenon was totally absent on PBCE* film, as hBM-MSCs maintained the mesenchymal shape and behavior and did not express neuronal/glial markers.


Assuntos
Materiais Biocompatíveis , Diferenciação Celular , Membranas Artificiais , Células-Tronco Mesenquimais/citologia , Neurônios/citologia , Actinas/metabolismo , Materiais Biocompatíveis/química , Biopolímeros , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Solventes
4.
Carbohydr Polym ; 246: 116631, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32747266

RESUMO

Fully biobased blends of thermoplastic starch and a poly(butylene cyclohexanedicarboxylate)-based random copolyester containing 25 % of adipic acid co-units (PBCEA) are prepared by melt blending and direct extrusion film casting. The obtained films are characterized from the physicochemical and mechanical point of view and their fragmentation under composting conditions is evaluated. The results demonstrate that the introduction of adipic acid co-units in the PBCE macromolecular chains permits to decrease the blending temperature, thus avoiding unwanted starch degradation reactions. Moreover, the presence of small amounts of citric acid as compatibilizer further improves the interfacial adhesion between the two components and promotes the formation of micro-porosities within the films. The synergistic combination of these factors leads to the development of materials showing an elastomeric behavior, i.e. no evident yield and elongation at break higher than 450 %, good moisture resistance and fast fragmentation in compost.

5.
Biomacromolecules ; 21(8): 3254-3269, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32602702

RESUMO

Considering the current context of research aiming at proposing new bioplastics with low costs and properties similar to fossil-based commodities currently on the market, in the present work, a hybrid blend containing a prevalent amount of cheap inedible cereal flour (70 wt %) and poly(butylene succinate) (PBS) (30 wt %) has been prepared by a simple, eco-friendly, and low-cost processing methodology. In order to improve the interfacial tension and enhance the adhesion between the different phases at the solid state, with consequent improvement in microstructure uniformity and in material mechanical and adhesive performance, the PBS fraction in the blend was replaced with variable amounts (0-25 wt %) of PBS-based green copolymer, which exerted the function of a compatibilizer. The copolymer is characterized by an ad hoc chemical structure, containing six-carbon aliphatic rings, also present in the flour starch structure. The two synthetic polyesters obtained through two-stage melt polycondensation have been deeply characterized from the molecular, thermal, and mechanical points of view. Copolymerization deeply impacts the polymer final properties, the crystallizing ability, and stiffness of the PBS homopolymer being reduced. Also, the prepared ternary blends were deeply investigated in terms of microstructure, thermal, and mechanical properties. Lastly, both pure blend components and ternary blends were subjected to disintegration experiments under composting conditions. The results obtained proved how effective was the compatibilizer action of the copolymer, as evidenced by the investigation conducted on morphology and mechanical properties. Specifically, the mixtures with 15 and 20 wt % Co appeared to be characterized by the best mechanical performance, showing a progressive increase of deformation while preserving good values of elastic modulus and stress. The disintegration rate in compost was found to be higher for the lower amount of copolymer in the ternary blend. However, after 90 days of incubation, the blend richest in copolymer content lost 62% of weight.


Assuntos
Farinha , Triticum , Butileno Glicóis , Polímeros
6.
Polymers (Basel) ; 12(6)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560215

RESUMO

Poly(2,5-alkylene furanoate)s are bio-based, smart, and innovative polymers that are considered the most promising materials to replace oil-based plastics. These polymers can be synthesized using ecofriendly approaches, starting from renewable sources, and result into final products with properties comparable and even better than those presented by their terephthalic counterparts. In this work, we present the molecular dynamics of four 100% bio-based poly(alkylene 2,5-furanoate)s, using broadband dielectric spectroscopy measurements that covered a wide temperature and frequency range. We unveiled complex local relaxations, characterized by the simultaneous presence of two components, which were dependent on thermal treatment. The segmental relaxation showed relaxation times and strengths depending on the glycolic subunit length, which were furthermore confirmed by high-frequency experiments in the molten region of the polymers. Our results allowed determining structure-property relations that are able to provide further understanding about the excellent barrier properties of poly(alkylene 2,5-furanoate)s. In addition, we provide results of high industrial interest during polymer processing for possible industrial applications of poly(alkylene furanoate)s.

7.
Front Chem ; 8: 85, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117900

RESUMO

Dye-sensitized photooxygenation reaction of bio-based double bond-containing substrates is proposed as sustainable functionalization of terpenes and terpenoids to transform them into polyoxygenated compounds to be employed for the synthesis of new bio-based polyesters. As proof of concept, citronellol 1 has been regioselectively converted into diol 4 using singlet oxygen (1O2), a traceless reagent that can be generated from air, visible light and zeolite supported-photosensitizer (Thionine-NaY). With our synthetic approach, diol 4 has been obtained in two-steps, with good regioselectivity, using green reagents such as light and air, and finally a solvent-free oxidation step. From this compound, a citronellol-based copolyester of poly(butylene succinate) (PBS) has been synthesized and fully characterized. The results obtained evidence that the proposed copolymerization of PBS with the citronellol-based building blocks allows to obtain a more flexible and functionalizable material, by exploiting a largely available natural molecule modified through a green synthetic path.

8.
ACS Sustain Chem Eng ; 8(25): 9558-9568, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-33796416

RESUMO

In the present paper, four fully biobased homopolyesters of 2,5-furandicarboxylic acid (2,5-FDCA) with a high molecular weight have been successfully synthesized by two-stage melt polycondensation, starting from the dimethyl ester of 2,5-FDCA and glycols of different lengths (the number of methylene groups ranged from 3 to 6). The synthesized polyesters have been first subjected to an accurate molecular characterization by NMR and gel-permeation chromatography. Afterward, the samples have been successfully processed into free-standing thin films (thickness comprised between 150 to 180 µm) by compression molding. Such films have been characterized from the structural (by wide-angle X-ray scattering and small-angle X-ray scattering), thermal (by differential scanning calorimetry and thermogravimetric analysis), mechanical (by tensile test), and gas barrier (by permeability measurements) point of view. The glycol subunit length was revealed to be the key parameter in determining the kind and fraction of ordered phases developed by the sample during compression molding and subsequent cooling. After storage at room temperature for one month, only the homopolymers containing the glycol subunit with an even number of -CH2- groups (poly(butylene 2,5-furanoate) (PBF) and poly(hexamethylene 2,5-furanoate) (PHF)) were able to develop a three-dimensional ordered crystalline phase in addition to the amorphous one, the other two appearing completely amorphous (poly(propylene 2,5-furanoate (PPF) and poly(pentamethylene 2,5-furanoate) (PPeF)). From X-ray scattering experiments using synchrotron radiation, it was possible to evidence a third phase characterized by a lower degree of order (one- or two-dimensional), called a mesophase, in all the samples under study, its fraction being strictly related to the glycol subunit length: PPeF was found to be the sample with the highest fraction of mesophase followed by PHF. Such a mesophase, together with the amorphous and the eventually present crystalline phase, significantly impacted the mechanical and barrier properties, these last being particularly outstanding for PPeF, the polyester with the highest fraction of mesophase among those synthesized in the present work.

9.
Environ Int ; 130: 104852, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31195223

RESUMO

Enzymatic hydrolysis of poly(1,4-butylene 2,5-thiophenedicarboxylate) (PBTF) and poly(1,4-butylene 2,5-furandicarboxylate) (PBF) by Humicola insolens (HiC) and Thermobifida cellulosilytica (Cut) cutinases is investigated. For the first time, the different depolymerization mechanisms of PBTF (endo-wise scission) and PBF (exo-wise cleavage) has been unveiled and correlated to the chemical structure of the two polyesters.


Assuntos
Actinobacteria/enzimologia , Alcenos/metabolismo , Ácidos Carboxílicos/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Polímeros/metabolismo , Alcenos/química , Ácidos Carboxílicos/química , Hidrólise , Polímeros/química , Thermobifida
10.
Int J Mol Sci ; 20(9)2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31052594

RESUMO

Biopolymers are gaining increasing importance as substitutes for plastics derived from fossil fuels, especially for packaging applications. In particular, furanoate-based polyesters appear as the most credible alternative due to their intriguing physic/mechanical and gas barrier properties. In this study, block copolyesters containing 2,5-furan and trans-1,4-cyclohexane moieties were synthesized by reactive blending, starting from the two parent homopolymers: poly(propylene furanoate) (PPF) and poly(propylene cyclohexanedicarboxylate) (PPCE). The whole range of molecular architectures, from long block to random copolymer with a fixed molar composition (1:1 of the two repeating units) was considered. Molecular, thermal, tensile, and gas barrier properties of the prepared materials were investigated and correlated to the copolymer structure. A strict dependence of the functional properties on the copolymers' block length was found. In particular, short block copolymers, thanks to the introduction of more flexible cyclohexane-containing co-units, displayed high elongation at break and low elastic modulus, thus overcoming PPF's intrinsic rigidity. Furthermore, the exceptionally low gas permeabilities of PPF were further improved due to the concomitant action of the two rings, both capable of acting as mesogenic groups in the presence of flexible aliphatic units, and thus responsible for the formation of 1D/2D ordered domains, which in turn impart outstanding barrier properties.


Assuntos
Cicloexanos/química , Furanos/química , Gases/química , Poliésteres/química , Cicloexanos/síntese química , Módulo de Elasticidade , Embalagem de Alimentos , Furanos/síntese química , Permeabilidade , Poliésteres/síntese química , Temperatura
11.
Exp Clin Transplant ; 17(4): 513-521, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30346264

RESUMO

OBJECTIVES: Liver transplant represents the criterion standard therapy for end-stage liver disease. Biliary complications after liver transplant have shown an increased trend and are characterized by anastomotic and nonanastomotic stenoses. MATERIALS AND METHODS: This retrospective single-center observational study included 217 patients who underwent liver transplant between January 2004 and December 2014; 18 patients had anastomotic (8.3%) and 29 (13.4%) had non-anastomotic stenoses. Patients with and without biliary stenosis were compared with regard to their preoperative, intraoperative, and postoperative parameters and donor characteristics. Patients with biliary stenosis were divided into 3 cohorts according to the type of endoscopic treatment performed (single plastic, multiple plastic, and fully covered self-ex-pandable metal stents). We compared the patients with different types of endoscopic biliary drainages for length and type of stenosis, presence of stones, time of onset and treatment, number of procedures, complications, and success rate. RESULTS: Preoperative Child-Pugh and Model for End-Stage Liver Disease scores, complication and reoperation rates, and donor age were significantly higher in the stenosis group. We found no statistical differences other than length of stenosis between patients with multiple stents and self-expanding metal stents. CONCLUSIONS: Preoperative recipient conditions and postoperative morbidities may represent risk factors for development of biliary strictures. Consequently, the optimal endoscopic treatment should be tailored to the type and the onset of stenosis and the patient's condition.


Assuntos
Colestase/terapia , Drenagem/efeitos adversos , Doença Hepática Terminal/cirurgia , Endoscopia do Sistema Digestório/efeitos adversos , Transplante de Fígado/efeitos adversos , Colestase/diagnóstico por imagem , Colestase/etiologia , Drenagem/instrumentação , Doença Hepática Terminal/diagnóstico , Endoscopia do Sistema Digestório/instrumentação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Plásticos , Desenho de Prótese , Estudos Retrospectivos , Fatores de Risco , Stents Metálicos Autoexpansíveis , Stents , Resultado do Tratamento
12.
Nanoscale ; 10(18): 8689-8703, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29701213

RESUMO

Innovative nanofibrous scaffolds have attracted considerable attention in bone tissue engineering, due to their ability to mimic the hierarchical architecture of an extracellular matrix. Aiming at investigating how the polymer chemistry and fiber orientation of electrospun scaffolds (ES) based on poly(butylene succinate) (PBS) and poly(butylene succinate/diglycolate) (P(BS80BDG20)) affect human osteoblast differentiation, uniaxially aligned (a-) and randomly (r-) distributed nanofibers were produced. Although human osteoblastic SAOS-2 cells were shown to be viable and adherent onto all ES materials, a-P(BS80BDG20) exhibited the best performance both in terms of cellular phosphorylated focal adhesion kinase expression and in terms of alkaline phosphatase activity, calcified bone matrix deposition and quantitative gene expression of bone specific markers during differentiation. It has been hypothesized that the presence of ether linkages may lead to an increased density of hydrogen bond acceptors along the P(BS80BDG20) backbone, which, by interacting with cell membrane components, can in turn promote a better cell attachment on the copolymer mats with respect to the PBS homopolymer. Furthermore, although displaying the same chemical structure, r-P(BS80BDG20) scaffolds showed a reduced cell attachment and osteogenic differentiation in comparison with a-P(BS80BDG20), evidencing the importance of nanofiber alignment. Thus, the coupled action of polymer chemical structure and nanofiber alignment played a significant role in promoting the biological interaction.


Assuntos
Regeneração Óssea , Butileno Glicóis , Nanofibras , Osteoblastos/citologia , Osteogênese , Polímeros , Alicerces Teciduais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Poliésteres , Engenharia Tecidual
13.
Polymers (Basel) ; 10(2)2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-30966203

RESUMO

Many efforts are currently devoted to the design and development of high performance bioplastics to replace traditional fossil-based polymers. In response, this contribution presents a new biobased aromatic polyester, i.e., poly(butylene 2,5-thiophenedicarboxylate) (PBTF). Here, PBTF is characterized from the molecular, thermo-mechanical and structural point of view. Gas permeability is evaluated at different temperatures, in the range below and above glass transition, providing a full insight into the performances of this material under different operating conditions, and demonstrating the superior gas barrier behavior of PBTF with respect to other polyesters, such as PEF and PET. The combination of calorimetric and diffractometric studies allows for a deep understanding of the structure of PBTF, revealing the presence of a not-induced 2D-ordered phase (meso-phase), responsible for its outstanding gas permeability behavior. The simple synthetic strategy adopted, the exceptional barrier properties, combined with the interesting mechanical characteristics of PBTF open up new scenarios in the world of green and sustainable packaging materials.

14.
Polymers (Basel) ; 10(5)2018 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-30966536

RESUMO

Random copolymers of poly(propylene 1,4-cyclohexanedicarboxylate) containing different amounts of neopentyl glycol sub-unit were investigated from the gas barrier point of view at the standard temperature of analysis (23 °C) with respect to the three main gases used in food packaging field: N2, O2, and CO2. The effect of temperature was also evaluated, considering two temperatures close to the Tg sample (8 and 15 °C) and two above Tg (30 and 38 °C). Barrier performances were checked after food contact simulants and in different relative humidity (RH) environments obtained with two saturated saline solutions (Standard Atmosphere, 23 °C, 85% of RH, with saturated KCl solution; Tropical Climate, 38 °C, 90% RH, with saturated KNO3 solution). The results obtained were compared to those of untreated film, which was used as a reference. The relationships between the gas transmission rate, the diffusion coefficients, the solubility, and the copolymer composition were established. The results highlighted a correlation between barrier performance and copolymer composition and the applied treatment. In particular, copolymerization did not cause a worsening of the barrier properties, whereas the different treatments differently influenced the gas barrier behavior, depending on the chemical polymer structure. After treatment, Fourier transform infrared analysis confirmed the chemical stability of these copolymers. Films were transparent, with a light yellowish color, slightly more intense after all treatments.

15.
Polymers (Basel) ; 10(7)2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30960710

RESUMO

Both academia and industry are currently devoting many efforts to develop high gas barrier bioplastics as substitutes of traditional fossil-based polymers. In this view, this contribution presents a new biobased aromatic polyester, i.e., poly(propylene 2,5-thiophenedicarboxylate) (PPTF), which has been compared with the furan-based counterpart (PPF). Both biopolyesters have been characterized from the molecular, thermo-mechanical and structural points of view. Gas permeability behavior has been evaluated with respect to 100% oxygen, carbon dioxide and nitrogen at 23 °C. In case of CO2 gas test, gas transmission rate has been also measured at different temperatures. The permeability behavior at different relative humidity has been investigated for both biopolyesters, the thiophen-containing sample demonstrating to be better than the furan-containing counterpart. PPF's permeability behavior became worse than PPTF's with increasing RH, due to the more polar nature of the furan ring. Both biopolyesters under study are characterized by superior gas barrier performances with respect to PEF and PET. With the simple synthetic strategy adopted, the exceptional barrier properties render these new biobased polyesters interesting alternatives in the world of green and sustainable packaging materials. The different polarity and stability of heterocyclic rings was revealed to be an efficient tool to tailor the ability of crystallization, which in turn affects mechanical and barrier performances.

16.
Polymers (Basel) ; 10(8)2018 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-30960791

RESUMO

The present paper describes the synthesis of novel bio-based poly(butylene 1,4-cyclohexane dicarboxylate)-containing random copolymers for sustainable and flexible packaging applications. On one side, the linear butylene moiety has been substituted by glycol subunits with alkyl pendant groups of different length. On the other side, copolymers with different cis/trans isomer ratio of cyclohexane rings have been synthesized. The prepared samples were subjected to molecular, thermal, diffractometric, and mechanical characterization. The barrier performances to O2, CO2, and N2 gases were also evaluated. The presence of side alkyl groups did not alter the thermal stability, whereas it significantly influences the formation of ordered phases that deeply affect the functional properties, mainly in terms of mechanical response and barrier performance. In particular, the final materials present higher flexibility and significantly improved barrier properties with respect to the homopolymer and most polymers widely employed for flexible packaging. The improvement due to copolymerization was more pronounced in the case of higher co-unit-containing copolymers and for the samples with cyclohexane rings in the trans conformation.

17.
Materials (Basel) ; 10(9)2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28867806

RESUMO

Biodegradable poly(butylene succinate) (PBS)-based random copolymers containing thioether linkages (P(BSxTDGSy)) of various compositions have been investigated and characterized from the gas barrier, thermal, and mechanical point of view, after food contact simulants or thermal and photoaging processes. Each stress treatment was performed on thin films and the results obtained have been compared to the same untreated film, used as a standard. Barrier properties with different gases (O2 and CO2) were evaluated, showing that the polymer chemical composition strongly influenced the permeability behavior. The relationships between the diffusion coefficients (D) and solubility (S) with polymer composition were also investigated. The results highlighted a correlation between polymer chemical structure and treatment. Gas transmission rate (GTR) mainly depending on the performed treatment, as GTR increased with the increase of TDGS co-unit amount. Thermal and mechanical tests allowed for the recording of variations in the degree of crystallinity and in the tensile properties. An increase in the crystallinity degree was recorded after contact with simulant liquids and aging treatments, together with a molecular weight decrease, a slight enhancement of the elastic modulus and a decrement of the elongation at break, proportional to the TDGS co-unit content.

18.
Materials (Basel) ; 10(9)2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-28869555

RESUMO

In the last decade, there has been an increased interest from the food packaging industry toward the development and application of bioplastics, to contribute to the sustainable economy and to reduce the huge environmental problem afflicting the planet. In the present work, we focus on a new furan-based polyester, poly(neopentyl glycol 2,5-furanoate) (PNF) to be used for sustainable food packaging applications. The aromatic polyester was successfully synthesized with high molecular weight, through a solvent-free process, starting directly from 2,5-furandicarboxylic acid. PNF was revealed to be a material with good thermal stability, characterized by a higher Tg and Tm and a lower RAF fraction compared to poly(propylene 2,5-furanoate) (PPF), ascribable to the two methyl side groups present in PNF glycol-sub-unit. PNF's mechanical characteristics, i.e., very high elastic modulus and brittle fracture, were found to be similar to those of PPF and PEF. Barrier properties to different gases, temperatures and relative humidity were evaluated. From the results obtained, PNF was showed to be a material with very smart barrier performances, significantly superior with respect to PEF's ones. Lastly, PNF's permeability behavior did not appreciably change after contact with food simulants, whereas it got worse with increasing RH, due to the polar nature of furan ring.

19.
Biomacromolecules ; 18(8): 2499-2508, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28636337

RESUMO

A biodegradable and biocompatible electrospun scaffold with shape memory behavior in the physiological temperature range is here presented. It was obtained starting from a specifically designed, biobased PLLA-based triblock copolymer, where the central block is poly(propylene azelate-co-propylene sebacate) (P(PAz60PSeb40)) random copolymer. Shape memory properties are determined by the contemporary presence of the low melting crystals of the P(PAz60PSeb40) block, acting as switching segment, and of the high melting crystal phase of PLLA blocks, acting as physical network. It is demonstrated that a straightforward annealing process applied to the crystal phase of the switching element gives the possibility to tune the shape recovery temperature from about 25 to 50 °C, without the need of varying the copolymer's chemical structure. The thermal annealing approach here presented can be thus considered a powerful strategy for "ad hoc" programming the same material for applications requiring different recovery temperatures. Fibroblast culture experiments demonstrated scaffold biocompatibility.


Assuntos
Materiais Biocompatíveis/química , Temperatura Corporal , Poliésteres/química , Animais , Humanos , Camundongos , Células NIH 3T3
20.
Carbohydr Polym ; 165: 51-60, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28363575

RESUMO

A new class of biodegradable materials developed by a combination of random eco-friendly copolyesters containing butylene succinate (BS) and triethylene succinate (TES) sequences with cellulose nanocrystals (CNC), is proposed and studied. Polymers and nanocomposite films were prepared by an optimized extrusion process to improve the processability and mechanical response for flexible film manufacturing. Poly(butylene succinate) (PBS) homopolymer and two random copolyesters containing different amounts of TES co-units, P(BS85TES15) and P(BS70TES30), were synthesized by melt polycondensation. The effect of TES and CNC presence and content on the microstructure, tensile properties, thermal characteristics and disintegration under composting conditions, as well as on the toughening mechanism of the blends was investigated. Material properties were modulated by varying the chemical composition. CNC were used as reinforcement additive and their effect is modulated by the interaction with the three polymeric matrices. The extruded films displayed tunable degradation rates, mechanical properties and wettability, and showed promising results for different industrial applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA