Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(W1): W191-W197, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37207330

RESUMO

There is an urgent need to diversify the pipeline for discovering novel natural products due to the increase in multi-drug resistant infections. Like bacteria, fungi also produce secondary metabolites that have potent bioactivity and rich chemical diversity. To avoid self-toxicity, fungi encode resistance genes which are often present within the biosynthetic gene clusters (BGCs) of the corresponding bioactive compounds. Recent advances in genome mining tools have enabled the detection and prediction of BGCs responsible for the biosynthesis of secondary metabolites. The main challenge now is to prioritize the most promising BGCs that produce bioactive compounds with novel modes of action. With target-directed genome mining methods, it is possible to predict the mode of action of a compound encoded in an uncharacterized BGC based on the presence of resistant target genes. Here, we introduce the 'fungal bioactive compound resistant target seeker' (FunARTS) available at https://funarts.ziemertlab.com. This is a specific and efficient mining tool for the identification of fungal bioactive compounds with interesting and novel targets. FunARTS rapidly links housekeeping and known resistance genes to BGC proximity and duplication events, allowing for automated, target-directed mining of fungal genomes. Additionally, FunARTS generates gene cluster networking by comparing the similarity of BGCs from multi-genomes.


Assuntos
Genoma Fúngico , Família Multigênica , Vias Biossintéticas/genética , Fungos/genética , Metabolismo Secundário/genética , Mineração de Dados , Software
2.
Nucleic Acids Res ; 50(W1): W682-W689, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35580059

RESUMO

For decades, natural products have been used as a primary resource in drug discovery pipelines to find new antibiotics, which are mainly produced as secondary metabolites by bacteria. The biosynthesis of these compounds is encoded in co-localized genes termed biosynthetic gene clusters (BGCs). However, BGCs are often not expressed under laboratory conditions. Several genetic manipulation strategies have been developed in order to activate or overexpress silent BGCs. Significant increases in production levels of secondary metabolites were indeed achieved by modifying the expression of genes encoding regulators and transporters, as well as genes involved in resistance or precursor biosynthesis. However, the abundance of genes encoding such functions within bacterial genomes requires prioritization of the most promising ones for genetic manipulation strategies. Here, we introduce the 'Secondary Metabolite Transcriptomic Pipeline' (SeMa-Trap), a user-friendly web-server, available at https://sema-trap.ziemertlab.com. SeMa-Trap facilitates RNA-Seq based transcriptome analyses, finds co-expression patterns between certain genes and BGCs of interest, and helps optimize the design of comparative transcriptomic analyses. Finally, SeMa-Trap provides interactive result pages for each BGC, allowing the easy exploration and comparison of expression patterns. In summary, SeMa-Trap allows a straightforward prioritization of genes that could be targeted via genetic engineering approaches to (over)express BGCs of interest.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Antibacterianos , Bactérias/genética , Vias Biossintéticas/genética , Genoma Bacteriano , Família Multigênica , Metabolismo Secundário/genética , Proteínas de Bactérias/genética
3.
Nucleic Acids Res ; 50(D1): D736-D740, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718689

RESUMO

As a result of the continuous evolution of drug resistant bacteria, new antibiotics are urgently needed. Encoded by biosynthetic gene clusters (BGCs), antibiotic compounds are mostly produced by bacteria. With the exponential increase in the number of publicly available, sequenced genomes and the advancements of BGC prediction tools, genome mining algorithms have uncovered millions of uncharacterized BGCs for further evaluation. Since compound identification and characterization remain bottlenecks, a major challenge is prioritizing promising BGCs. Recently, researchers adopted self-resistance based strategies allowing them to predict the biological activities of natural products encoded by uncharacterized BGCs. Since 2017, the Antibiotic Resistant Target Seeker (ARTS) facilitated this so-called target-directed genome mining (TDGM) approach for the prioritization of BGCs encoding potentially novel antibiotics. Here, we present the ARTS database, available at https://arts-db.ziemertlab.com/. The ARTS database provides pre-computed ARTS results for >70,000 genomes and metagenome assembled genomes in total. Advanced search queries allow users to rapidly explore the fundamental criteria of TDGM such as BGC proximity, duplication and horizontal gene transfers of essential housekeeping genes. Furthermore, the ARTS database provides results interconnected throughout the bacterial kingdom as well as links to known databases in natural product research.


Assuntos
Bases de Dados Factuais , Farmacorresistência Bacteriana/genética , Metagenoma/genética , Software , Antibacterianos , Bactérias/efeitos dos fármacos , Bactérias/genética , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Transferência Genética Horizontal/genética , Genoma Bacteriano
4.
Nucleic Acids Res ; 48(W1): W546-W552, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32427317

RESUMO

Multi-drug resistant pathogens have become a major threat to human health and new antibiotics are urgently needed. Most antibiotics are derived from secondary metabolites produced by bacteria. In order to avoid suicide, these bacteria usually encode resistance genes, in some cases within the biosynthetic gene cluster (BGC) of the respective antibiotic compound. Modern genome mining tools enable researchers to computationally detect and predict BGCs that encode the biosynthesis of secondary metabolites. The major challenge now is the prioritization of the most promising BGCs encoding antibiotics with novel modes of action. A recently developed target-directed genome mining approach allows researchers to predict the mode of action of the encoded compound of an uncharacterized BGC based on the presence of resistant target genes. In 2017, we introduced the 'Antibiotic Resistant Target Seeker' (ARTS). ARTS allows for specific and efficient genome mining for antibiotics with interesting and novel targets by rapidly linking housekeeping and known resistance genes to BGC proximity, duplication and horizontal gene transfer (HGT) events. Here, we present ARTS 2.0 available at http://arts.ziemertlab.com. ARTS 2.0 now includes options for automated target directed genome mining in all bacterial taxa as well as metagenomic data. Furthermore, it enables comparison of similar BGCs from different genomes and their putative resistance genes.


Assuntos
Farmacorresistência Bacteriana/genética , Genoma Bacteriano , Software , Vias Biossintéticas/genética , Mineração de Dados , Genes Bacterianos , Metagenômica
5.
Molecules ; 26(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396183

RESUMO

The development of new antibacterial drugs has become one of the most important tasks of the century in order to overcome the posing threat of drug resistance in pathogenic bacteria. Many antibiotics originate from natural products produced by various microorganisms. Over the last decades, bioinformatical approaches have facilitated the discovery and characterization of these small compounds using genome mining methodologies. A key part of this process is the identification of the most promising biosynthetic gene clusters (BGCs), which encode novel natural products. In 2017, the Antibiotic Resistant Target Seeker (ARTS) was developed in order to enable an automated target-directed genome mining approach. ARTS identifies possible resistant target genes within antibiotic gene clusters, in order to detect promising BGCs encoding antibiotics with novel modes of action. Although ARTS can predict promising targets based on multiple criteria, it provides little information about the cluster structures of possible resistant genes. Here, we present SYN-view. Based on a phylogenetic approach, SYN-view allows for easy comparison of gene clusters of interest and distinguishing genes with regular housekeeping functions from genes functioning as antibiotic resistant targets. Our aim is to implement our proposed method into the ARTS web-server, further improving the target-directed genome mining strategy of the ARTS pipeline.


Assuntos
Antibacterianos/biossíntese , Vias Biossintéticas/genética , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Família Multigênica , Filogenia , Software , Sintenia , Bactérias/genética , Biologia Computacional , Mineração de Dados , Descoberta de Drogas , Genoma Bacteriano , Humanos
6.
Chemosphere ; 245: 125665, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31877459

RESUMO

Selenium (Se) is present in a wide variety of natural and man-made materials on Earth. Plants are able to tolerate and (hyper)accumulate Se to different extents. In fact, some species can tolerate and accumulate multiple elements. Puccinellia distans (P. distans), weeping alkali grass, is known to hyperaccumulate extreme concentrations of boron and tolerate high levels of salinity, therefore, we investigated the Se accumulation and tolerance capacities of this species. In addition, P. distans' Se tolerance mechanism was studied using a transcriptomic approach. The results of this study indicated that, when grown in a hydroponic system containing 80 or 120 µM Se, P. distans shoots accumulated from 1500 to 2500-fold more Se than plants grown without the element. Thus, P. distans was discovered to be a novel Se accumulator plant. RNA sequencing results and biochemical analyses helped to shed light on the Se tolerance and accumulation mechanism of P. distans. Here, we suggest that upregulation of Se assimilation and stress response genes may be due to induction of jasmonic acid signaling. In addition, we propose that the cell wall may play an important role in restriction of Se movement to the cytoplasm. Also, we hypothesize that Se accumulates in cells by sequestration of selenate in the vacuole.


Assuntos
Perfilação da Expressão Gênica , Poaceae/metabolismo , Selênio/farmacocinética , Boro/farmacocinética , Ciclopentanos , Tolerância a Medicamentos , Hidroponia , Oxilipinas , Poaceae/fisiologia , Ácido Selênico , Selênio/farmacologia , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA