Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 18(4): e1009242, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35377870

RESUMO

Ratiometric time-lapse FRET analysis requires a robust and accurate processing pipeline to eliminate bias in intensity measurements on fluorescent images before further quantitative analysis can be conducted. This level of robustness can only be achieved by supplementing automated tools with built-in flexibility for manual ad-hoc adjustments. FRET-IBRA is a modular and fully parallelized configuration file-based tool written in Python. It simplifies the FRET processing pipeline to achieve accurate, registered, and unified ratio image stacks. The flexibility of this tool to handle discontinuous image frame sequences with tailored configuration parameters further streamlines the processing of outliers and time-varying effects in the original microscopy images. FRET-IBRA offers cluster-based channel background subtraction, photobleaching correction, and ratio image construction in an all-in-one solution without the need for multiple applications, image format conversions, and/or plug-ins. The package accepts a variety of input formats and outputs TIFF image stacks along with performance measures to detect both the quality and failure of the background subtraction algorithm on a per frame basis. Furthermore, FRET-IBRA outputs images with superior signal-to-noise ratio and accuracy in comparison to existing background subtraction solutions, whilst maintaining a fast runtime. We have used the FRET-IBRA package extensively to quantify the spatial distribution of calcium ions during pollen tube growth under mechanical constraints. Benchmarks against existing tools clearly demonstrate the need for FRET-IBRA in extracting reliable insights from FRET microscopy images of dynamic physiological processes at high spatial and temporal resolution. The source code for Linux and Mac operating systems is released under the BSD license and, along with installation instructions, test images, example configuration files, and a step-by-step tutorial, is freely available at github.com/gmunglani/fret-ibra.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Software , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Microscopia , Razão Sinal-Ruído
2.
Methods Mol Biol ; 2160: 275-292, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32529444

RESUMO

Pollen tubes face many obstacles on their way to the ovule. They have to decide whether to navigate around cells or penetrate the cell wall and grow through it or even within it. Besides chemical sensing, which directs the pollen tubes on their path to the ovule, this involves mechanosensing to determine the optimal strategy in specific situations. Mechanical cues then need to be translated into physiological signals, which eventually lead to changes in the growth behavior of the pollen tube. To study these events, we have developed a system to directly quantify the forces involved in pollen tube navigation. We combined a lab-on-a-chip device with a microelectromechanical systems-based force sensor to mimic the pollen tube's journey from stigma to ovary in vitro. A force-sensing plate creates a mechanical obstacle for the pollen tube to either circumvent or attempt to penetrate while measuring the involved forces in real time. The change of growth behavior and intracellular signaling activities can be observed with a fluorescence microscope.


Assuntos
Microfluídica/métodos , Tubo Polínico/fisiologia , Robótica/métodos , Estresse Mecânico , Arabidopsis , Cálcio/metabolismo , Dispositivos Lab-On-A-Chip , Microfluídica/instrumentação , Tubo Polínico/metabolismo , Robótica/instrumentação
3.
Phys Rev Lett ; 123(5): 058002, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31491319

RESUMO

We report on the buckling and subsequent collapse of orthotropic elastic spherical shells under volume and pressure control. Going far beyond what is known for isotropic shells, a rich morphological phase space with three distinct regimes emerges upon variation of shell slenderness and degree of orthotropy. Our extensive numerical simulations are in agreement with experiments using fabricated polymer shells. The shell buckling pathways and corresponding strain energy evolution are shown to depend strongly on material orthotropy. We find surprisingly robust orthotropic structures with strong similarities to stomatocytes and tricolpate pollen grains, suggesting that the shape of several of Nature's collapsed shells could be understood from the viewpoint of material orthotropy.

4.
Plant Physiol ; 176(3): 1981-1992, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29247121

RESUMO

Leu-rich repeat extensins (LRXs) are chimeric proteins containing an N-terminal Leu-rich repeat (LRR) and a C-terminal extensin domain. LRXs are involved in cell wall formation in vegetative tissues and required for plant growth. However, the nature of their role in these cellular processes remains to be elucidated. Here, we used a combination of molecular techniques, light microscopy, and transmission electron microscopy to characterize mutants of pollen-expressed LRXs in Arabidopsis (Arabidopsisthaliana). Mutations in multiple pollen-expressed lrx genes cause severe defects in pollen germination and pollen tube growth, resulting in a reduced seed set. Physiological experiments demonstrate that manipulating Ca2+ availability partially suppresses the pollen tube growth defects, suggesting that LRX proteins influence Ca2+-related processes. Furthermore, we show that LRX protein localizes to the cell wall, and its LRR-domain (which likely mediates protein-protein interactions) is associated with the plasma membrane. Mechanical analyses by cellular force microscopy and finite element method-based modeling revealed significant changes in the material properties of the cell wall and the fine-tuning of cellular biophysical parameters in the mutants compared to the wild type. The results indicate that LRX proteins might play a role in cell wall-plasma membrane communication, influencing cell wall formation and cellular mechanics.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Parede Celular/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Pólen/crescimento & desenvolvimento , Proteínas/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Fenômenos Biofísicos , Cálcio/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Parede Celular/ultraestrutura , Análise de Elementos Finitos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Proteínas de Repetições Ricas em Leucina , Mutação/genética , Fenótipo , Pólen/citologia , Pólen/genética , Pólen/ultraestrutura , Tubo Polínico/citologia , Tubo Polínico/genética , Tubo Polínico/ultraestrutura , Proteínas/genética , Sementes/efeitos dos fármacos , Sementes/metabolismo , Sementes/ultraestrutura
5.
Lab Chip ; 17(1): 82-90, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27883138

RESUMO

Quantification of mechanical properties of tissues, living cells, and cellular components is crucial for the modeling of plant developmental processes such as mechanotransduction. Pollen tubes are tip-growing cells that provide an ideal system to study the mechanical properties at the single cell level. In this article, a lab-on-a-chip (LOC) device is developed to quantitatively measure the biomechanical properties of lily (Lilium longiflorum) pollen tubes. A single pollen tube is fixed inside the microfluidic chip at a specific orientation and subjected to compression by a soft membrane. By comparing the deformation of the pollen tube at a given external load (compressibility) and the effect of turgor pressure on the tube diameter (stretch ratio) with finite element modeling, its mechanical properties are determined. The turgor pressure and wall stiffness of the pollen tubes are found to decrease considerably with increasing initial diameter of the pollen tubes. This observation supports the hypothesis that tip-growth is regulated by a delicate balance between turgor pressure and wall stiffness. The LOC device is modular and adaptable to a variety of cells that exhibit tip-growth, allowing for the straightforward measurement of mechanical properties.


Assuntos
Dispositivos Lab-On-A-Chip , Tubo Polínico/crescimento & desenvolvimento , Módulo de Elasticidade , Desenho de Equipamento , Lilium/crescimento & desenvolvimento , Lilium/metabolismo , Microfluídica/instrumentação , Microfluídica/métodos , Microscopia Eletrônica , Tubo Polínico/química
6.
Tissue Eng Part A ; 16(12): 3747-58, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20666608

RESUMO

Biomaterial matrices presenting extracellular matrix (ECM) components in a controlled three-dimensional configuration provide a unique system to study neural stem cell (NSC)-ECM interactions. We cultured primary murine neurospheres in a methylcellulose (MC) scaffold functionalized with laminin-1 (MC-x-LN1) and monitored NSC survival, apoptosis, migration, differentiation, and matrix production. Overall, MC-x-LN1 enhanced both NSC survival and maturation compared with MC controls. Significantly lower levels of apoptotic activity were observed in MC-x-LN1 than in MC controls, as measured by bcl-2/bax gene expression and tetramethylrhodamine-dUTP nick end labeling. A higher percentage of NSCs extended neurites in a ß1-integrin-mediated fashion in MC-x-LN1 than in MC controls. Further, the differentiation profiles of NSCs in MC-x-LN1 exhibited higher levels of neuronal and oligodendrocyte precursor markers than in MC controls. LN1 production and co-localization with α6ß1 integrins was markedly increased within MC-x-LN1, whereas the production of fibronectin was more pronounced in MC controls. These findings demonstrate that NSC microenvironments modulate cellular activity throughout the neurosphere, contributing to our understanding of ECM-mediated NSC behavior and provide new avenues for developing rationally designed couriers for neurotransplantation.


Assuntos
Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Células-Tronco Neurais/citologia , Engenharia Tecidual/métodos , Animais , Apoptose/genética , Apoptose/fisiologia , Diferenciação Celular/genética , Movimento Celular/genética , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Células Cultivadas , Feminino , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Células-Tronco Neurais/metabolismo , Neuritos/metabolismo , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA