Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 6878, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106013

RESUMO

Due to the lack of farm-gate milk processing facilities, dairy farmers have to sell raw milk, resulting in economic and quality compromises. The study compared the quality of yogurt processed in solar assisted yogurt processing unit with the existing milk value chain and its techno-economic feasibility. For this, an investigation of the experiment was executed where four different milk processing approaches were compared. The quality attributes for processed milk like fat (5.283%), solid-not-fat (9.0833%), salts (0.6833%), protein (3.8%), lactose (4.1%), total solids (14.383%), pH (6.87), density (1.031 kg/L) and freezing point (- 0.532 °C) were found within the standardized ranges. Similarly, for the case of yogurt, these attributes were found as fat (5.5%), solid-not-fat (8.683%), acidity (0.93%), lactose (4.73%), total solids (14.183%), pH (4.3433), density (1.039 kg/L) syneresis (9.87 mL/100 g), S. thermophilus count range (10.18-10.30 log cfu/mL) and L. bulgaricus count range (10.26-10.34 log cfu/mL). Moreover, no detection of coliform count in solar-processed yogurt, endorsed the current idea to perform three processes of heating, fermentation, and cooling in a single unit. Based on the energy sources utilized, the payback period was calculated to be 1.3-9 years with an expected lifespan of 15 years while in terms of product profit, the payback period was predicted to be 1.78 years. The processing cost per liter of milk for yogurt production was calculated to be 0.0189 USD. Considering CO2 emission savings, it is anticipated that a solar-powered yogurt processing unit can generate 107.73 MWh of useful energy during its operating life with zero CO2 emission.


Assuntos
Dióxido de Carbono , Iogurte , Animais , Estudos de Viabilidade , Lactose , Leite , Fermentação
2.
Mycologia ; 112(5): 871-879, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32813615

RESUMO

Wheat yellow/stripe rust pathogen Puccinia striiformis is highly diverse and recombinant in the north of Pakistan in the Himalayan region. However, little is known about the role of this diversity in disease epidemics in areas where wheat yellow rust is an important disease in both irrigated and rain-fed wheat (i.e., in the plains of Pakistan). We explored the population diversity in P. striiformis during the rust epidemics of 2013 in the major wheat-growing regions of Pakistan (the Himalayan region, central Khyber Pakhtunkhwa [KP], southern KP, central and northern Punjab). Disease severities among commonly grown cultivars ranged from 5% to 100%. Microsatellite genotyping with 16 simple sequence repeat (SSR) markers revealed a high diversity among 266 isolates collected during the season, with the Simpson diversity index (Simpson 1949) ranging from 0.870 (Himalayan) to 0.955 (southern KP). The recombination signature was stronger in the Himalayan population and central KP compared with wheat-growing regions of Punjab and southern KP. The overall diversity was higher in Pakistan relative to the clonal populations present in Europe, Australia, and the Americas. Analyses of population subdivision revealed no clear evidence of spatial structure for samples from Pakistan, with a maximum fixation index (FST) value of only 0.10. The lack of clear population subdivision could be attributed to migration of pathogen. In turn, the high diversity of P. striiformis in Pakistan represents a potential threat to wheat production in the region and worldwide, as a possible source to found clonal populations in diverse wheat-growing areas.


Assuntos
Doenças das Plantas , Puccinia/classificação , Puccinia/genética , Puccinia/patogenicidade , Triticum/classificação , Triticum/genética , Triticum/microbiologia , Produtos Agrícolas/classificação , Produtos Agrícolas/genética , Produtos Agrícolas/microbiologia , Variação Genética , Genótipo , Paquistão/epidemiologia
3.
J Nematol ; 522020.
Artigo em Inglês | MEDLINE | ID: mdl-33829165

RESUMO

Meloidogyne graminicola threatens global rice production, yet is understudied for many areas where it is cultivated. To better understand the prevalence and incidence of M. graminicola in central Punjab, Pakistan, we carried out field surveys of rice fields in the districts of Faisalabad and Chiniot. M. graminicola isolates were recovered from soil and root samples and identified on the basis of perineal patterns and rDNA ITS-based sequencing. The severity of nematode attack on rice roots and infested fields at various locations was based on galling index, root-knot nematode juveniles per root system, juveniles per 100 ml of soil, and prevalence of stylet-bearing nematodes and non-stylet-bearing nematodes. Maximum prevalence (22.5 and 27.5%) and minimum prevalence (17.5 and 20%) of M. graminicola was observed in Chiniot and Faisalabad, respectively. Eleven alternate host-plant species were examined in this study revealing varying degrees of M. graminicola infestation. ITS sequencing and phylogenetic analysis indicated that isolates from this study form a well-resolved clade with others from Asia, while another isolate falls outside of this clade in an unresolved polytomy with those from Europe and South America. Though monophyletic with the other M. graminicola, the isolates from Pakistan are distinguished by their high genetic variability and long branch lengths relative to the other isolates of M. graminicola, suggesting Pakistan as a possible ancestral area. Our results indicate that rice is severely attacked by a genetically diverse and aggressive M. graminicola, necessitating the development of appropriate control measures for its management in rice and other graminaceous crops.

4.
Int J Phytoremediation ; 19(12): 1077-1084, 2017 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-28678606

RESUMO

Municipal effluent of three rural settings of Islamabad was assessed for physicochemical and microbiological parameters by collecting wastewater from inlet and center of ponds. Results showed that water quality was comparatively better at the center as Typha latifolia plants were growing toward the center of ponds. In another study, the wastewater treatment ability of T. latifolia was investigated by growing them in industrial and municipal effluent under greenhouse conditions. Water and plant samples were collected periodically (3rd, 10th, 17th, 24th, and 31st day after transplanting) for the measurement of Pb, Cu, and Cd concentrations. A decrease in heavy metal concentration of both effluents was observed as the experiment progressed and metal removal percentages ranged between 81% and 96%. Complementary the increase in metal concentration in plant tissues was observed over experimental period. Among plant tissues, metal concentration of Pb was highest i.e. 362 mg kg-1 in roots and 313 mg kg-1 in shoots at end of experiment. Pb, Cu, and Cd concentrations were higher in roots than shoots and hence translocation factors were less than 1.0. Metal removal efficiency was better from industrial wastewater and was in order of Pb > Cu > Cd. T. latifolia can be used for remediation of heavy metal-polluted wastewater.


Assuntos
Esgotos , Typhaceae , Águas Residuárias , Biodegradação Ambiental , Metais Pesados/análise , Raízes de Plantas , Lagoas , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA