Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pak J Pharm Sci ; 37(1): 95-105, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38741405

RESUMO

Hydrophilic drugs could be incorporated into the skin surface by manes of Lipogel. This study aimed to prepare miconazole lipogel with natural ingredients to enhance drug permeability using dimethyl Sulfoxide (DMSO). The miconazole lipogels, A1 (without DMSO) and A2 (with DMSO) were formulated and evaluated for organoleptic evaluation, pH, viscosity, stability studies, freeze-thawing, drug release profile and drug permeation enhancement. Results had stated that prepared lipogel's pH falls within the acceptable range required for topical delivery (4 to 6) while both formulations show good results in organoleptic evaluation. The A2 formulation containing DMSO shows better permeation of miconazole (84.76%) on the artificial skin membrane as compared to A1 lipogel formulation (50.64%). In in-vitro drug release studies, A2 for-mulation showed 87.48% drug release while A1 showed just 60.1% drug release from lipogel. Stability studies were performed on model formulations under environmental conditions and both showed good spreadibility, stable pH, free of grittiness and good consistency in formulation. The results concluded that A2 formulation containing DMSO shows better results as compared to DMSO-free drug lipogel.


Assuntos
Dimetil Sulfóxido , Liberação Controlada de Fármacos , Géis , Miconazol , Permeabilidade , Miconazol/administração & dosagem , Miconazol/química , Miconazol/farmacocinética , Dimetil Sulfóxido/química , Viscosidade , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Absorção Cutânea/efeitos dos fármacos , Química Farmacêutica , Composição de Medicamentos , Antifúngicos/administração & dosagem , Antifúngicos/química , Antifúngicos/farmacocinética , Administração Cutânea
2.
J Liposome Res ; 34(1): 203-218, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37338000

RESUMO

Drug delivery through transdermal route is one of the effective methods for the application of drugs. It overcomes many drawbacks which are encountered with the oral route. Moreover, many drugs are not able to pass through the stratum corneum, which is the main barrier for the transdermal drug delivery. Formation of ultra-deformable vesicles (UDVs) is a novel technique for the transdermal applications of the drugs. Transethosomes (TEs), ethosomes, and transferosomes are all part of the UDV. Because of the presence of increased concentrations of ethanol, phospholipids, and edge activators, TEs provide improved drug permeation through the stratum corneum. Because of the elasticity of TEs, drug penetration into the deeper layer of skin also increases. TEs can be prepared using a variety of techniques, including the cold method, hot method, thin film hydration method, and the ethanol injection method. It increases patient adherence and compliance because it is a non-invasive procedure of administering drugs. Characterization of the TEs includes pH determination, size and shape, zeta potential, particle size determination, transition temperature, drug content, vesicle stability, and skin permeation studies. These vesicular systems can be utilized to deliver a variety of medications transdermally, including analgesics, antibiotics, antivirals, and anticancer and arthritis medications. This review aims to describe vesicular approaches that had been used to overcome the barrier for the transdermal delivery of drug and also describes brief composition, method of preparation, characterization tests, mechanism of penetration of TEs, as well as highlighted various applications of TEs in medicine.


Assuntos
Lipossomos , Absorção Cutânea , Humanos , Lipossomos/química , Administração Cutânea , Sistemas de Liberação de Medicamentos , Pele/metabolismo , Etanol/química , Portadores de Fármacos/química
3.
J Liposome Res ; : 1-14, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37840238

RESUMO

Solid Lipid Nanoparticles (SLN), the first type of lipid-based solid carrier systems in the nanometer range, were introduced as a replacement for liposomes. SLN are aqueous colloidal dispersions with solid biodegradable lipids as their matrix. SLN is produced using processes like solvent diffusion method and high-pressure homogenization, among others. Major benefits include regulated release, increased bioavailability, preservation of peptides and chemically labile compounds like retinol against degradation, cost-effective excipients, better drug integration, and a broad range of applications. Solid lipid nanoparticles can be administered via different routes, such as oral, parenteral, pulmonary, etc. SLN can be prepared by using high shear mixing as well as low shear mixing. The next generation of solid lipids, nanostructured lipid carriers (NLC), can reduce some of the drawbacks of SLN, such as its restricted capacity for drug loading and drug expulsion during storage. NLC are controlled nanostructured lipid particles that enhance drug loading. This review covers a brief introduction of solid lipid nanoparticles, manufacturing techniques, benefits, limitations, and their characterization tests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA