Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 70(41): 13349-13357, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36205442

RESUMO

Corn bran is an abundant coprocessing stream of corn-starch processing, rich in highly substituted, diferuloyl-cross-linked glucurono-arabinoxylan. The diferuloyl cross-links make the glucurono-arabinoxylan recalcitrant to enzymatic conversion and constitute a hindrance for designing selective enzymatic upgrading of corn glucurono-arabinoxylan. Here, we show that two bacterial feruloyl esterases, wtsFae1A and wtsFae1B, each having a carbohydrate-binding module of family 48, are capable of cleaving the ester bonds of the cross-linkages and releasing 5-5', 8-5', 8-5' benzofuran, and 8-O-4' diferulate from soluble and insoluble corn bran glucurono-arabinoxylan. All four diferulic acids were released at similar efficiency, indicating nondiscriminatory enzymatic selectivity for the esterified dimer linkages, the only exception being that wtsFae1B had a surprisingly high propensity for releasing the dimers, especially 8-5' benzofuran diferulate, indicating a potential, unique catalytic selectivity. The data provide evidence of direct enzymatic release of diferulic acids from corn bran by newly discovered feruloyl esterases, i.e., a new enzyme activity. The findings yield new insight and create new opportunities for enzymatic opening of diferuloyl cross-linkages to pave the way for upgrading of recalcitrant arabinoxylans.


Assuntos
Benzofuranos , Zea mays , Zea mays/química , Hidrolases de Éster Carboxílico/química , Xilanos/química , Ácidos Cumáricos/química , Fibras na Dieta , Ésteres , Amido , Esterases
2.
Appl Environ Microbiol ; 88(1): e0181921, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34705548

RESUMO

Glucuronan lyases (EC 4.2.2.14) catalyze depolymerization of linear ß-(1,4)-polyglucuronic acid (glucuronan). Only a few glucuronan lyases have been characterized until now, most of them originating from bacteria. Here we report the discovery, recombinant production, and functional characterization of the full complement of six glucuronan specific polysaccharide lyases in the necrotic mycoparasite Trichoderma parareesei. The enzymes belong to four different polysaccharide lyase families and have different reaction optima and glucuronan degradation profiles. Four of them showed endo-lytic action and two, TpPL8A and TpPL38A, displayed exo-lytic action. Nuclear magnetic resonance revealed that the monomeric end product from TpPL8A and TpPL38A underwent spontaneous rearrangements to tautomeric forms. Proteomic analysis of the secretomes from T. parareesei growing on pure glucuronan and lyophilized A. bisporus fruiting bodies, respectively, showed secretion of five of the glucuronan lyases and high-performance anion-exchange chromatography with pulsed amperometric detection analysis confirmed the presence of glucuronic acid in the A. bisporus fruiting bodies. By systematic genome annotation of more than 100 fungal genomes and subsequent phylogenetic analysis of the putative glucuronan lyases, we show that glucuronan lyases occur in several ecological and taxonomic groups in the fungal kingdom. Our findings suggest that a diverse repertoire of glucuronan lyases is a common trait among Hypocreales species with mycoparasitic and entomopathogenic lifestyles. IMPORTANCE This paper reports the discovery of a set of six complementary glucuronan lyase enzymes in the mycoparasite Trichoderma parareseei. Apart from the novelty of the discovery of these enzymes in T. parareesei, the key importance of the study is the finding that the majority of these lyases are induced when T. parareesei is inoculated on Basidiomycete cell walls that contain glucuronan. The study also reveals putative glucuronan lyase encoding genes in a wealth of other fungi that furthermore points at fungal cell wall glucuronan being a target C-source for many types of fungi. In a technical context, the findings may lead to controlled production of glucuronan oligomers for advanced pharmaceutical applications and pave the way for development of new fungal biocontrol agents.


Assuntos
Hypocreales , Trichoderma , Humanos , Hypocreales/metabolismo , Filogenia , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Proteômica , Secretoma , Trichoderma/genética , Trichoderma/metabolismo
3.
Enzyme Microb Technol ; 116: 48-56, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29887016

RESUMO

Laccases (EC 1.10.3.2) catalyze oxidation of phenolic groups in lignin to phenoxyl radicals during reduction of O2 to H2O. Here, we examine the influence on this radical formation of mediators which are presumed to act by shuttling electrons between the laccase and the subunits in lignin that the enzyme cannot approach directly. Treatments of three different lignins with laccase-mediator-systems (LMS) including laccases derived from Trametes versicolor and Myceliophthora thermophila, respectively, and four individual mediators, 1-hydroxybenzotriazole (HBT), N-hydroxyphthalimide (HPI), 2,2,6,6-tetramethylpiperidin-1-yloxy (TEMPO), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) were assessed by real time electron paramagnetic resonance measurements. Radical steady state concentrations and radical formation rates were quantified. LMS treatments with 500 µM N-OH type mediators (HPI or HBT) did not affect the lignin radical formation, but increased doses of those mediators (5 mM) surprisingly led to significantly decreased radical formation rates and lowered steady state radical concentrations. Laccase-TEMPO treatment at a 5 mM mediator dose was the only system that significantly increased steady state radical concentration and rate of radical formation in beech organosolv lignin. The data suggest that electron shuttling by mediators is not a significant general mechanism for enhancing laccase catalyzed oxidation of biorefinery lignin substrates, and the results thus provide a new view on laccase catalyzed lignin modification.


Assuntos
Benzotiazóis/química , Óxidos N-Cíclicos/química , Proteínas Fúngicas/química , Lacase/química , Lignina/química , Fenóis/química , Ftalimidas/química , Ácidos Sulfônicos/química , Triazóis/química , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Sordariales/enzimologia , Trametes/enzimologia
4.
Enzyme Microb Technol ; 106: 88-96, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28859815

RESUMO

Laccases (EC 1.10.3.2) catalyse removal of an electron and a proton from phenolic hydroxyl groups, including phenolic hydroxyls in lignins, to form phenoxy radicals during reduction of O2. We employed electron paramagnetic resonance spectroscopy (EPR) for real time measurement of such catalytic radical formation activity on three types of lignin (two types of organosolv lignin, and a lignin rich residue from wheat straw hydrolysis) brought about by two different fungal laccases, derived from Trametes versicolor (Tv) and Myceliophthora thermophila (Mt), respectively. Laccase addition to suspensions of the individual lignin samples produced immediate time and enzyme dose dependent increases in intensity in the EPR signal with g-values in the range 2.0047-2.0050 allowing a direct quantitative monitoring of the radical formation and thus allowed laccase enzyme kinetics assessment on lignin. The experimental data verified that the laccases acted upon the insoluble lignin substrates in the suspensions. When the action on the lignin substrates of the two laccases were compared on equal enzyme dosage levels (by activity units on syringaldazine) the Mt laccase exerted a significantly faster radical formation than the Tv laccase on all three types of lignin substrates. When comparing the equal laccase dose rates on the three lignin substrates the enzymatic radical formation rate on the wheat straw lignin residue was consistently higher than those of the organosolv lignins. The pH-temperature optimum for the radical formation rate in organosolv lignin was determined by response surface methodology to pH 4.8, 33°C and pH 5.8, 33°C for the Tv laccase and the Mt laccase, respectively. The results verify direct radical formation action of fungal laccases on lignin without addition of mediators and the EPR methodology provides a new type of enzyme assay of laccases on lignin.


Assuntos
Lacase/metabolismo , Lignina/metabolismo , Sistemas Computacionais , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Lignina/química , Fenóis/química , Fenóis/metabolismo , Sordariales/enzimologia , Especificidade por Substrato , Temperatura , Trametes/enzimologia
5.
Biotechnol Adv ; 33(1): 13-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25560931

RESUMO

Modification of lignin is recognized as an important aspect of the successful refining of lignocellulosic biomass, and enzyme-assisted processing and upcycling of lignin is receiving significant attention in the literature. Laccases (EC 1.10.3.2) are taking the centerstage of this attention, since these enzymes may help degrading lignin, using oxygen as the oxidant. Laccases can catalyze polymerization of lignin, but the question is whether and how laccases can directly catalyze modification of lignin via catalytic bond cleavage. Via a thorough review of the available literature and detailed illustrations of the putative laccase catalyzed reactions, including the possible reactions of the reactive radical intermediates taking place after the initial oxidation of the phenol-hydroxyl groups, we show that i) Laccase activity is able to catalyze bond cleavage in low molecular weight phenolic lignin model compounds; ii) For laccases to catalyze inter-unit bond cleavage in lignin substrates, the presence of a mediator system is required. Clearly, the higher the redox potential of the laccase enzyme, the broader the range of substrates, including o- and p-diphenols, aminophenols, methoxy-substituted phenols, benzenethiols, polyphenols, and polyamines, which may be oxidized. In addition, the currently available analytical methods that can be used to detect enzyme catalyzed changes in lignin are summarized, and an improved nomenclature for unequivocal interpretation of the action of laccases on lignin is proposed.


Assuntos
Lacase/metabolismo , Lignina/química , Biomassa , Catálise , Cromatografia Gasosa-Espectrometria de Massas , Polimerização , Espectroscopia de Infravermelho com Transformada de Fourier , Especificidade por Substrato , Terminologia como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA