Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5949, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467699

RESUMO

There are known individual differences in both the ability to learn the layout of novel environments and the flexibility of strategies for navigating known environments. However, it is unclear how navigational abilities are impacted by high-stress scenarios. Here we used immersive virtual reality (VR) to develop a novel behavioral paradigm to examine navigation under dynamically changing situations. We recruited 48 participants (24 female; ages 17-32) to navigate a virtual maze (7.5 m × 7.5 m). Participants learned the maze by moving along a fixed path past the maze's landmarks (paintings). Subsequently, participants experienced either a non-stress condition, or a high-stress condition tasking them with navigating the maze. In the high-stress condition, their initial path was blocked, the environment was darkened, threatening music was played, fog obstructed more distal views of the environment, and participants were given a time limit of 20 s with a countdown timer displayed at the top of their screen. On trials where the path was blocked, we found self-reported stress levels and distance traveled increased while trial completion rate decreased (as compared to non-stressed control trials). On unblocked stress trials, participants were less likely to take a shortcut and consequently navigated less efficiently compared to control trials. Participants with more trait spatial anxiety reported more stress and navigated less efficiently. Overall, our results suggest that navigational abilities change considerably under high-stress conditions.


Assuntos
Navegação Espacial , Estresse Fisiológico , Realidade Virtual , Feminino , Humanos , Individualidade , Aprendizagem em Labirinto , Masculino , Adolescente , Adulto Jovem , Adulto
2.
J Intell ; 11(11)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37998704

RESUMO

Spatial ability is important for success in STEM fields but is typically measured using a small number of tests that were not developed in the STEM context, have not been normed with recent samples, or have not been subjected to modern psychometric analyses. Here, an approach to developing valid, reliable, and efficient computer-based tests of spatial skills is proposed and illustrated via the development of an efficient test of the ability to visualize cross-sections of three-dimensional (3D) objects. After pilot testing, three measures of this ability were administered online to 498 participants (256 females, aged 18-20). Two of the measures, the Santa Barbara Solids and Planes of Reference tests had good psychometric properties and measured a domain-general ability to visualize cross-sections, with sub-factors related to item difficulty. Item-level statistics informed the development of the refined versions of these tests and a combined measure composed of the most informative test items. Sex and ethnicity had no significant effects on the combined measure after controlling for mathematics education, verbal ability, and age. The measures ofcross-sectioning ability developed in the context of geology education were found to be too difficult, likely because they measured domain knowledge in addition to cross-sectioning ability. Recommendations are made for the use of cross-section tests in selection and training and for the more general development of spatial ability measures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA